Commit Graph

139 Commits

Author SHA1 Message Date
Georgi Gerganov
ec893798b7
llama : custom attention mask + parallel decoding + no context swaps (#3228)
* tests : verify that RoPE is "additive"

* llama : replace ggml_diag_mask_inf with ggml_add (custom -inf mask)

* ggml : ggml_rope now takes a vector with positions instead of n_past

* metal : add rope_f16 kernel + optimize cpy kernels

* llama : unified KV cache + batch inference API

* llama : add new llama_decode() API that works with llama_batch

* llama : add cell_max heuristic for more efficient kv_cache

* llama : extend llama_kv_cache API

* llama : more robust cell_max heuristic + wip shift

* metal : disable concurrency optimization

* llama : add llama_kv_cache_shift_seq + no more context swaps

* llama : apply K-cache roping for Falcon and Baichuan

* speculative : fix KV cache management

* parallel : example for serving multiple users in parallel

* parallel : disable hot-plug to avoid cache fragmentation

* fixes : speculative KV cache + llama worst-case graph

* llama : extend batch API to select which logits to output

* llama : fix worst case graph build

* ggml-cuda : update rope implementation for parallel decoding (#3254)

* ggml-cuda : update rope implementation for parallel decoding

* better solution for p0 computation

* fix rope

* simpler rope implementation

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* make : add parallel to build + fix static functions in llama.cpp

* simple : fix token counting

* parallel : various improvements

* llama : fix cell_max logic + rename functions

* parallel : try smaller batches when the KV cache is fragmented

* parallel : fix sequence termination criteria

* llama : silence errors KV cache errors

* parallel : remove new line from prompt

* parallel : process system prompt once + configurable paramters + llama API

* parallel : remove question with short answers

* parallel : count cache misses

* parallel : print misses on each request

* parallel : minor

* llama : fix n_kv to never become 0

* parallel : rename hot-plug to continuous-batching

* llama : improve llama_batch API + simplify parallel example

* simple : add parallel decoding support

* simple : improve comments + free batch

* ggml-cuda : add rope f16, restore performance with parallel decoding (#3272)

* ggml-cuda : add rope f16, restore performance

* offload KQ_mask with all models

* fix rope shift

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* llama : disable MPI for now

ggml-ci

* train : make KQ_pos memory buffer permanent via dummy scale op

* ggml : revert change to ggml_cpy, add ggml_cont_Nd instead (#3275)

ggml-ci

* parallel : fix bug (extra BOS) + smaller token_prev array

* parallel : fix cases where the input prompts can overflow the batch

* parallel : add disabled experimental batch chunking in powers of two

* llama : llama.h formatting + comments

* simple : add README.md

* llama : fix kv cache heuristic when context is less than 32

* parallel : fix crash when `-n -1`

* llama : simplify returns if/else branches

* metal : use mm kernels for batch size > 2

* examples : utilize new llama_get_logits_ith()

* examples : add example for batched decoding

* examples : do not eval prompt 2 times (close #3348)

* server : clear the KV cache beyond n_past before llama_decode

* server : avoid context swaps by shifting the KV cache

---------

Co-authored-by: slaren <slarengh@gmail.com>
2023-09-28 19:04:36 +03:00
Rickard Hallerbäck
dc6897404e
metal : reusing llama.cpp logging (#3152)
* metal : reusing llama.cpp logging

* cmake : build fix

* metal : logging callback

* metal : logging va_args memory fix

* metal : minor cleanup

* metal : setting function like logging macro to capital letters

* llama.cpp : trailing whitespace fix

* ggml : log level enum used by llama

* Makefile : cleanup ggml-metal recipe

* ggml : ggml_log_callback typedef

* ggml : minor

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-09-27 18:48:33 +03:00
Georgi Gerganov
8c00b7a6ff
sync : ggml (Metal F32 support + reduce ggml-alloc size) (#3192)
* sync : ggml (Metal F32 support + reduce ggml-alloc size)

ggml-ci

* llama-bench : fix ggml_cpu_has_metal() duplicate function

ggml-ci
2023-09-15 19:06:03 +03:00
Eric Sommerlade
b52b29ab9d
arm64 support for windows (#3007)
Co-authored-by: Cebtenzzre <cebtenzzre@gmail.com>
2023-09-12 21:54:20 -04:00
slaren
06abf8eeba
ggml : add view_src and view_offs to ggml_tensor for views (#2874)
* ggml : add view_src and view_offs

* update ggml-alloc to use view_src

* update ggml_diag_mask to work correctly with automatic inplace

* exclude other ops that set an inplace flag from automatic inplace
2023-08-29 23:24:42 +02:00
xaedes
44c117f41e
train : mem usage and other improvements (#2439)
* fix track_max_mem in forward_batch_wo_cache_flash_attn_train

* remove unnecessary Adam(W) optimizer tensors.

reduces optimizer memory overhead from 7*modelsize to 2*modelsize.

additionally allows to optimize models with more than 2^31 parameters by replacing int with int64_t.

bumps training checkpoint file version, but old checkpoints can still be read.
new version with less tensors is saved.

* add gradient clipping to AdamW

* Fix reset of unused g->nodes and g->grads to NULL

* implement gradient checkpointing for training

reduces memory overhead from O(n_layer) to O(sqrt(n_layer))

as explained in readme of https://github.com/cybertronai/gradient-checkpointing

* remove unused compute buffer 3

* add and use function ggml_build_backward_expand to avoid stack overflows with large maximum number of nodes

GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep);

* change AdamW decay parameter to work like the torch AdamW decay parameter

It is now relative to Adam learning rate `alpha*sched`.
Before that it was relative to `sched` only.

`alpha` being the maximum learning rate and `sched` being a scaling parameter in [0..1]

* change default AdamW weight decay parameter used in training to 0.1 as used in nanoGPT

* change default AdamW weight decay parameter defined in ggml to 0.0, making Adam default instead of AdamW

btw: the default weight decay parameter for torch.optim.AdamW is 0.01

* bug fixes for cross entropy loss

ggml_cross_entropy_loss: sums where not correctly added in workload of each thread
ggml_cross_entropy_loss_back: simplify backward process, reducing numerical issues

guard usage of exp f16 lookup in cross entropy by #define GGML_CROSS_ENTROPY_EXP_FP16

cross entropy loss is only used once during training, but it is quite sensitive to numerical errors introduced by exp-f16-lookup.
so exp-f16-lookup for cross entropy loss is disabled by default, trading better gradients for very slightly worse runtime performance.

* fix test-grad0 for cross_entropy_loss

the second argument to cross_entropy_loss must sum up to 1 for each row

* fix test-grad0 for soft_max

dont use only sum as aggregation, because sum of softmax is always 1 -> finite differences should not work
instead use sum(log(soft_max()*(1-eps)+eps)); use eps to avoid log(0)

* improve finite differences of test-grad0 by using double instead of float

* change cross_entropy_loss to output average over all rows

this helps keeping the loss and gradients in a sane range

* improve gradient checkpointing

sqrt(n_layers) is only the best checkpoint step when mem size of checkpoints and mem size of layers are equal.
since layers require more memory than the single-tensor-checkpoint we use, the optimal values are compute different:

```
  given: n, u, v
  objective: minimize(a*u+b*v) where a*b=n, a>0, b>0
  b=n/a
  minimize(a*u+v*n/a)
  diff(a*u+v*n/a, a) = u - (v*n/a)/a
  diff(a*u+v*n/a, a) == 0
  u - (v*n/a)/a == 0
  u == v*n/(a*a)
  u*a*a = v*n
  a*a = v*n/u
  a = sqrt(n*v/u)
```

this change results in more checkpoints, requiring less layers to store between checkpoints, overall improving memory usage.

* disable gradient checkpointing debug output

* llama : fix rope usage in train-text-from-scratch after ChatGLM change

* add more training parameters:

--enable-restart N         Only for Adam optimizer. Enable restarts of cos-decay
--disable-restart N        Only for Adam optimizer. Disable restarts of cos-decay
--opt-past N               Number of optimization iterations to track for delta convergence test. Disabled when zero.
--opt-delta N              Maximum delta for delta convergence test. Disabled when <= zero.
--opt-max-no-improvement N Maximum number of optimization iterations with no improvement. Disabled when <= zero.
--adam-epsf N              AdamW epsilon for convergence test. Disabled when <= zero.
--adam-min-alpha N         Adam minimum learning rate alpha, usually 0.1 * alpha

* replace memcpy with reshape operation so that the graph is not cut at the input

this makes it possible to store other values into the input tensor and then simply recompute the graph without rebuilding it

* remove unused function argument from get_example_targets_batch

* measure and print total training time

* add optimization callback to ggml_opt_resume_g

this callback is called before each iteration with custom data and pointer to learning schedule parameter (only used in Adam(W)).

can be used for dynamic learning schedule and setting input data for batches before each iteration

* use optimization callback in training

allows dynamic learning schedule and different batch data for each iteration without relying on low n_iter and high n_examples parameters

reduces runtime by avoiding restart of optimization function and improves training convergence by providing a different batch for each iteration

* add minimum number of tensor dimensions to apply weight decay (default 2)

this allows to not apply weight decay to bias parameters

* rename training parameter cos-decay-alpha to cos-decay-min and clarify that adam-min-alpha also applies to warmup

* fix increase of model.train_samples and model.train_tokens

now that each optimizer iteration gets its own batch we need to multiply by number of opt iterations

* change sampling parameters for prediction after training to defaults of common.h

and clarify what is context for prediction and what are generated tokens

* tighten abs error bounds for cross_entropy_loss in test-grad0

* add conditional compilation of using F16 exp in flash attention

uncomment `// #define GGML_FLASH_ATTN_EXP_FP16` to enable usage of f16 exp in flash attention

* tighten abs error bounds for flash_attn in test-grad0

* tighten abs error bounds for sqrt in test-grad0

* remove out-commented vectorized code of opt_adam

the vectorized code might be bit faster for low number of parameters, but it had a big memory usage overhead

* ggml : update ggml_rms_norm_back with configurable eps

* llama training : fix ggml_rms_norm_back calls to pass configurable eps

* remove trailing whitespace

* add train function using automatic gradient checkpointing backward pass and allocator

* in train function replace add_inplace by regular add

because using add_inplace seems to result in different gradients

* don't use allocate hash_map on context

because the context has no_alloc=True when using memory allocator resulting in NULL data pointers

* correctly clone reshape and permute operations by also cloning tensor->nb values

* fix variable name and add missing type cast

* terminate recursive tensor cloning when reaching tensor without src tensors

* correctly clone view tensors by setting data pointers

without this the checkpointing would only work when being used together with memory allocator

* fix variable names

* swap arguments to commutative ops to be the same as in `forward_batch_wo_cache_flash_attn`

* add input tensors as checkpoints

so that recursive tensor cloning of gradient checkpointing terminates on input tensors

* fix variable name and add missing boolean negation

* make sure some tensors are not reallocated by inserting new temporary nodes depending on them:

output and parameter gradient tensors need to be available at the end of the graph execution

parameter gradient tensors also need to be available before the graph execution because they are set to zero before each optimizer iteration

checkpoint tensors are allocated all together to reduce memory allocator fragmentation

afterwards, in addition to the temporary nodes, we also need to reset the temporary leafs

* fix ASSERT to work with zero layers

* add training options whether to use allocator and/or unified training function

* integrate unified training function which may use memory allocator

the unified training function also supports arguments whether to use flash attention and/or gradient checkpointing

* format name of cloned tensors with " (clone)" suffix

* set names for tensors in unified train function for easier debugging

* allocate graph on context using ggml_new_graph

* remove handwritten training functions

* remove unused training parameters "use_scratch" and "use_unified"

* remove trailing whitespace

* remove unused train params: mem_compute1_gb & mem_compute2_gb

mem_compute_gb is used for compute when automatic memory allocator is not enabled, otherwise it can be very small to only hold the tensor definitions
mem_compute0_gb is used for automatic memory allocator (as long as measurement of max required size is not implemented)

* remove unused forward_batch function

* add debug asserts in ggml_allocr_alloc to some common pitfalls when using this function directly

* only use ggml_allocr_alloc when tensor has NULL data and is no view

* fix test when to create temporary backward graph

temporary backward graph is only necessary when using checkpointing

* fix memory "leak" in optimizers

each iteration a new cplan with new memory for work data was allocated.
now cplan creation only happens at the start of optimization, with each iteration reusing the cplan and its work data.

* reverse order of for loop in ggml_build_backward_expand to save memory when using gradient checkpointing and allocator

with this loop order gradient checkpointing with allocator on 16 layer model saves 13% memory; 2 layer memory it saves 2% memory.

the computation results are the same

* add missing lctx argument to get_example_targets_batch

* implement llama model file saving using gguf

checkpoint loading and saving disabled, to be replaced by loading and saving via gguf

* implement loading/saving of checkpointing files using GGUF

* bug fixes

* add checkpoint file version for future compatibility

* update readme with gguf filenames

* save & load opt->just_initialized value

* add first draft for checkpoint conversion script

* add gguf arch and ftype

* save opt parameter counter as uint64

* add gguf key and tensor names for optimizer and training

* add layer_norm_rms_eps to checkpoint convert script

* use same GGUF_GET_KEY macro as in llama.cpp

* use norm_rms_eps, and rope parameters and command line options to set them

* fix memory corruption bug in gguf

ctx->kv and ctx->infos was reallocated using not-aligned realloc, but freed with aligned free.
to fix this a GGML_ALIGNED_REALLOC was added, but there is no posix_memalign_realloc function.
so on non-windows and non-mingw32 platforms we fall back to aligned malloc, followed by copying
and freeing the old data.

* add gguf example cmake file

* bug fixes in tokenize_file

* bug fixes in load_llama_model_gguf

* bug fix: init model when no checkpoint was loaded

* bug fix in read_tensor_by_name

* bug fix in load_opt_context_gguf

* avoid printing lots of spaced on the unusual case that loss gets nan

* set name of tensors with empty name from what was read from gguf

* remove trailing whitespace

* print data checksums before saving and after loading to verify correctness

* bug fixes for convert-train-checkpoint-to-gguf

* temporarily add code to write old checkpoint files

used to verify that old checkpoint files are correctly converted to gguf

* bug fixes for convert-train-checkpoint-to-gguf.py loading checkpoints with opt_version=0

* remove code used to verify correctness of checkpoint file conversion

* remove trailing whitespace

* remove prediction related code

use main for prediction, it is better optimized

* update train-text-from-scratch README.md

* fix non-windows GGML_ALIGNED_REALLOC

* add missing blank line at end of file

* remove GGML_ALIGNED_REALLOC and use normal malloc/realloc/free for gguf ctx->kv & ctx->infos

* train : fix compile warnings

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-08-28 22:51:47 +03:00
Georgi Gerganov
35feac6560
ggml : sync (mem align to header + conv_transpose_2d fixes + ggml_alloc) (#2852)
* ggml : sync (mem align to header + conv_transpose_2d fixes)

ggml-ci

* ggml-alloc : minor fix

* ggml-alloc : sync more fixes
2023-08-28 14:24:53 +03:00
Georgi Gerganov
d0cee0d36d
gguf : add 64-bit support (GGUF v2) (#2821)
* gguf : bump version to 2

* gguf : add support for 64-bit (no backwards comp yet)

* gguf : v1 backwards comp

* gguf.py : bump GGUF version

* gguf.py : uint64_t on all lengths, sizes and counts, enums still uint32_t

* gguf.py : string lengths uint32_t

* gguf : update all counts to 64-bit

* gguf.py : string len uint64_t and n_dims uint32_t

* gguf : fix typo

* llama.cpp : print gguf version

---------

Co-authored-by: klosax <131523366+klosax@users.noreply.github.com>
2023-08-27 14:19:54 +03:00
Przemysław Pawełczyk
1591e2e590
ggml : detect SSSE3 (#2825)
* ggml : add ggml_cpu_has_ssse3

* llama : show SSSE3 in system info
2023-08-27 11:10:25 +03:00
Georgi Gerganov
cf658adc83
llm : add Falcon support (#2717)
* llama : refactor GGUF constants into static maps

* llama : check if model architecture is known

* llama : refactor llama_model_load_internal()

* gguf : add KV constant maps

* llm : read arch-specific KVs

* convert : add dummy scores + types

* falcon : load tensor data (CPU only)

* llama : fix loading progress bar

* llama : add arch member to llama_model

* falcon : CPU inference working

* falcon : support non-40B models

* falcon : minor

* llama : minor updates

ggml-ci

* convert-falcon-hf-to-gguf.py : fix special token mapping

* llama.cpp : llama default UNK token = id 0

* llama.cpp : fix bpe tokenizer

* llama.cpp : fix the fix of bpe tokenizer

* ggml : pass eps to ggml_norm

* metal : implement RoPE (mode = 2) + avoid ggml_repeat

* ggml : ggml_repeat always creates new tensor

* falcon : copy-paste self-attention from LLaMA

* metal : print extra compute pipeline info

* falcon : minor changes (still chasing the Metal problem)

* llama.cpp : fix linefeed token

* metal : fix GELU kernel numerical stability by using precise::tanh

* metal : temporary workaround for the concurrency optimization bug

* falcon : add CUDA offloading (#2739)

* llama : better model naming and size reporting

* llama : prep new tokenizer support

* llama : advanced BPE tokenizer based on ggllm.cpp imlpementation

* llama : remove oboslete comment

ggml-ci

* common : remove obsolete BPE API + disable test-tokenizer-1

* llama : revert BPE special-case in llama_byte_to_token()

* cuda : add TODOs for RoPE NeoX implementation

* llama : default special tokens based on vocab type

* perplexity : add log for start of tokenization

---------

Co-authored-by: klosax <131523366+klosax@users.noreply.github.com>
Co-authored-by: slaren <slarengh@gmail.com>
2023-08-23 23:08:04 +03:00
Georgi Gerganov
ef3f333d37
ggml : sync latest (SAM + SD operators, CUDA alibi) (#2709)
* ggml : sync latest (SAM + SD operators, CUDA alibi)

ggml-ci

* ggml : fix tabs
2023-08-22 14:22:08 +03:00
Kylin
1e3bc523d8
ggml : support CUDA's half type for aarch64(#1455) (#2670)
* ggml: support CUDA's half type for aarch64(#1455)
support CUDA's half type for aarch64 in ggml_fp16_t definition

* ggml: use __CUDACC__ to recognise nvcc compiler
2023-08-22 10:14:23 +03:00
Georgi Gerganov
6381d4e110
gguf : new file format with flexible meta data (beta) (#2398)
* gguf : first API pass

* gguf : read header + meta data

* gguf : read tensor info

* gguf : initial model loading - not tested

* gguf : add gguf_get_tensor_name()

* gguf : do not support passing existing ggml_context to gguf_init

* gguf : simplify gguf_get_val

* gguf : gguf.c is now part of ggml.c

* gguf : read / write sample models

* gguf : add comments

* refactor : reduce code duplication and better API (#2415)

* gguf : expose the gguf_type enum through the API for now

* gguf : add array support

* gguf.py : some code style changes

* convert.py : start a new simplified implementation by removing old stuff

* convert.py : remove GGML vocab + other obsolete stuff

* GGUF : write tensor (#2426)

* WIP: Write tensor

* GGUF : Support writing tensors in Python

* refactor : rm unused import and upd todos

* fix : fix errors upd writing example

* rm example.gguf

* gitignore *.gguf

* undo formatting

* gguf : add gguf_find_key (#2438)

* gguf.cpp : find key example

* ggml.h : add gguf_find_key

* ggml.c : add gguf_find_key

* gguf : fix writing tensors

* gguf : do not hardcode tensor names to read

* gguf : write sample tensors to read

* gguf : add tokenization constants

* quick and dirty conversion example

* gguf : fix writing gguf arrays

* gguf : write tensors one by one and code reuse

* gguf : fix writing gguf arrays

* gguf : write tensors one by one

* gguf : write tensors one by one

* gguf : write tokenizer data

* gguf : upd gguf conversion script

* Update convert-llama-h5-to-gguf.py

* gguf : handle already encoded string

* ggml.h : get array str and f32

* ggml.c : get arr str and f32

* gguf.py : support any type

* Update convert-llama-h5-to-gguf.py

* gguf : fix set is not subscriptable

* gguf : update convert-llama-h5-to-gguf.py

* constants.py : add layer norm eps

* gguf.py : add layer norm eps and merges

* ggml.h : increase GGML_MAX_NAME to 64

* ggml.c : add gguf_get_arr_n

* Update convert-llama-h5-to-gguf.py

* add gptneox gguf example

* Makefile : add gptneox gguf example

* Update convert-llama-h5-to-gguf.py

* add gptneox gguf example

* Update convert-llama-h5-to-gguf.py

* Update convert-gptneox-h5-to-gguf.py

* Update convert-gptneox-h5-to-gguf.py

* Update convert-llama-h5-to-gguf.py

* gguf : support custom alignment value

* gguf : fix typo in function call

* gguf : mmap tensor data example

* fix : update convert-llama-h5-to-gguf.py

* Update convert-llama-h5-to-gguf.py

* convert-gptneox-h5-to-gguf.py : Special tokens

* gptneox-main.cpp : special tokens

* Update gptneox-main.cpp

* constants.py : special tokens

* gguf.py : accumulate kv and tensor info data + special tokens

* convert-gptneox-h5-to-gguf.py : accumulate kv and ti + special tokens

* gguf : gguf counterpart of llama-util.h

* gguf-util.h : update note

* convert-llama-h5-to-gguf.py : accumulate kv / ti + special tokens

* convert-llama-h5-to-gguf.py : special tokens

* Delete gptneox-common.cpp

* Delete gptneox-common.h

* convert-gptneox-h5-to-gguf.py : gpt2bpe tokenizer

* gptneox-main.cpp : gpt2 bpe tokenizer

* gpt2 bpe tokenizer (handles merges and unicode)

* Makefile : remove gptneox-common

* gguf.py : bytesarray for gpt2bpe tokenizer

* cmpnct_gpt2bpe.hpp : comments

* gguf.py : use custom alignment if present

* gguf : minor stuff

* Update gptneox-main.cpp

* map tensor names

* convert-gptneox-h5-to-gguf.py : map tensor names

* convert-llama-h5-to-gguf.py : map tensor names

* gptneox-main.cpp : map tensor names

* gguf : start implementing libllama in GGUF (WIP)

* gguf : start implementing libllama in GGUF (WIP)

* rm binary commited by mistake

* upd .gitignore

* gguf : calculate n_mult

* gguf :  inference with 7B model working (WIP)

* gguf : rm deprecated function

* gguf : start implementing gguf_file_saver (WIP)

* gguf : start implementing gguf_file_saver (WIP)

* gguf : start implementing gguf_file_saver (WIP)

* gguf : add gguf_get_kv_type

* gguf : add gguf_get_kv_type

* gguf : write metadata in gguf_file_saver (WIP)

* gguf : write metadata in gguf_file_saver (WIP)

* gguf : write metadata in gguf_file_saver

* gguf : rm references to old file formats

* gguf : shorter name for member variable

* gguf : rm redundant method

* gguf : get rid of n_mult, read n_ff from file

* Update gguf_tensor_map.py

* Update gptneox-main.cpp

* gguf : rm references to old file magics

* gguf : start implementing quantization (WIP)

* gguf : start implementing quantization (WIP)

* gguf : start implementing quantization (WIP)

* gguf : start implementing quantization (WIP)

* gguf : start implementing quantization (WIP)

* gguf : start implementing quantization (WIP)

* gguf : quantization is working

* gguf : roper closing of file

* gguf.py : no need to convert tensors twice

* convert-gptneox-h5-to-gguf.py : no need to convert tensors twice

* convert-llama-h5-to-gguf.py : no need to convert tensors twice

* convert-gptneox-h5-to-gguf.py : simplify nbytes

* convert-llama-h5-to-gguf.py : simplify nbytes

* gptneox-main.cpp : n_layer --> n_block

* constants.py : n_layer --> n_block

* gguf.py : n_layer --> n_block

* convert-gptneox-h5-to-gguf.py : n_layer --> n_block

* convert-llama-h5-to-gguf.py : n_layer --> n_block

* gptneox-main.cpp : n_layer --> n_block

* Update gguf_tensor_map.py

* convert-gptneox-h5-to-gguf.py : load model in parts to save memory

* convert-llama-h5-to-gguf.py : load model in parts to save memory

* convert : write more metadata for LLaMA

* convert : rm quantization version

* convert-gptneox-h5-to-gguf.py : add file_type key

* gptneox-main.cpp : add file_type key

* fix conflicts

* gguf : add todos and comments

* convert-gptneox-h5-to-gguf.py : tensor name map changes

* Create gguf_namemap.py : tensor name map changes

* Delete gguf_tensor_map.py

* gptneox-main.cpp : tensor name map changes

* convert-llama-h5-to-gguf.py : fixes

* gguf.py : dont add empty strings

* simple : minor style changes

* gguf : use UNIX line ending

* Create convert-llama-7b-pth-to-gguf.py

* llama : sync gguf-llama.cpp with latest llama.cpp (#2608)

* llama : sync gguf-llama.cpp with latest llama.cpp

* minor : indentation + assert

* llama : refactor gguf_buffer and gguf_ctx_buffer

* llama : minor

* gitignore : add gptneox-main

* llama : tokenizer fixes (#2549)

* Merge tokenizer fixes into the gguf branch.

* Add test vocabularies

* convert : update convert-new.py with tokenizer fixes (#2614)

* Merge tokenizer fixes into the gguf branch.

* Add test vocabularies

* Adapt convert-new.py (and fix a clang-cl compiler error on windows)

* llama : sync gguf-llama with llama (#2613)

* llama : sync gguf-llama with llama

* tests : fix build + warnings (test-tokenizer-1 still fails)

* tests : fix wstring_convert

* convert : fix layer names

* llama : sync gguf-llama.cpp

* convert : update HF converter to new tokenizer voodoo magics

* llama : update tokenizer style

* convert-llama-h5-to-gguf.py : add token types

* constants.py : add token types

* gguf.py : add token types

* convert-llama-7b-pth-to-gguf.py : add token types

* gguf-llama.cpp :  fix n_head_kv

* convert-llama-h5-to-gguf.py : add 70b gqa support

* gguf.py : add tensor data layout

* convert-llama-h5-to-gguf.py : add tensor data layout

* convert-llama-7b-pth-to-gguf.py : add tensor data layout

* gptneox-main.cpp : add tensor data layout

* convert-llama-h5-to-gguf.py : clarify the reverse permute

* llama : refactor model loading code (#2620)

* llama : style formatting + remove helper methods

* llama : fix quantization using gguf tool

* llama : simplify gguf_file_saver

* llama : fix method names

* llama : simplify write_header()

* llama : no need to pass full file loader to the file saver

just gguf_ctx

* llama : gguf_file_saver write I32

* llama : refactor tensor names (#2622)

* gguf: update tensor names searched in quantization

* gguf : define tensor names as constants

* gguf : initial write API (not tested yet)

* gguf : write to file API (not tested)

* gguf : initial write API ready + example

* gguf : fix header write

* gguf : fixes + simplify example + add ggml_nbytes_pad()

* gguf : minor

* llama : replace gguf_file_saver with new gguf write API

* gguf : streaming support when writing files

* gguf : remove oboslete write methods

* gguf : remove obosolete gguf_get_arr_xxx API

* llama : simplify gguf_file_loader

* llama : move hparams and vocab from gguf_file_loader to llama_model_loader

* llama : merge gguf-util.h in llama.cpp

* llama : reorder definitions in .cpp to match .h

* llama : minor simplifications

* llama : refactor llama_model_loader (WIP)

wip : remove ggml_ctx from llama_model_loader

wip : merge gguf_file_loader in llama_model_loader

* llama : fix shape prints

* llama : fix Windows build + fix norm_rms_eps key

* llama : throw error on missing KV paris in model meta data

* llama : improve printing + log meta data

* llama : switch print order of meta data

---------

Co-authored-by: M. Yusuf Sarıgöz <yusufsarigoz@gmail.com>

* gguf : deduplicate (#2629)

* gguf : better type names

* dedup : CPU + Metal is working

* ggml : fix warnings about unused results

* llama.cpp : fix line feed and compiler warning

* llama : fix strncpy warning + note token_to_str does not write null

* llama : restore the original load/save session implementation

Will migrate this to GGUF in the future

* convert-llama-h5-to-gguf.py : support alt ctx param name

* ggml : assert when using ggml_mul with non-F32 src1

* examples : dedup simple

---------

Co-authored-by: klosax <131523366+klosax@users.noreply.github.com>

* gguf.py : merge all files in gguf.py

* convert-new.py : pick #2427 for HF 70B support

* examples/gguf : no need to keep q option for quantization any more

* llama.cpp : print actual model size

* llama.cpp : use ggml_elements()

* convert-new.py : output gguf (#2635)

* convert-new.py : output gguf (WIP)

* convert-new.py : add gguf key-value pairs

* llama : add hparams.ctx_train + no longer print ftype

* convert-new.py : minor fixes

* convert-new.py : vocab-only option should work now

* llama : fix tokenizer to use llama_char_to_byte

* tests : add new ggml-vocab-llama.gguf

* convert-new.py : tensor name mapping

* convert-new.py : add map for skipping tensor serialization

* convert-new.py : convert script now works

* gguf.py : pick some of the refactoring from #2644

* convert-new.py : minor fixes

* convert.py : update to support GGUF output

* Revert "ci : disable CI temporary to not waste energy"

This reverts commit 7e82d25f40.

* convert.py : n_head_kv optional and .gguf file extension

* convert.py : better always have n_head_kv and default it to n_head

* llama : sync with recent PRs on master

* editorconfig : ignore models folder

ggml-ci

* ci : update ".bin" to ".gguf" extension

ggml-ci

* llama : fix llama_model_loader memory leak

* gptneox : move as a WIP example

* llama : fix lambda capture

ggml-ci

* ggml : fix bug in gguf_set_kv

ggml-ci

* common.h : .bin --> .gguf

* quantize-stats.cpp : .bin --> .gguf

* convert.py : fix HF tensor permuting / unpacking

ggml-ci

* llama.cpp : typo

* llama : throw error if gguf fails to init from file

ggml-ci

* llama : fix tensor name grepping during quantization

ggml-ci

* gguf.py : write tensors in a single pass (#2644)

* gguf : single pass for writing tensors + refactoring writer

* gguf : single pass for writing tensors + refactoring writer

* gguf : single pass for writing tensors + refactoring writer

* gguf : style fixes in simple conversion script

* gguf : refactor gptneox conversion script

* gguf : rename h5 to hf (for HuggingFace)

* gguf : refactor pth to gguf conversion script

* gguf : rm file_type key and method

* gguf.py : fix vertical alignment

* gguf.py : indentation

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* convert-gptneox-hf-to-gguf.py : fixes

* gguf.py : gptneox mapping

* convert-llama-hf-to-gguf.py : fixes

* convert-llama-7b-pth-to-gguf.py : fixes

* ggml.h : reverse GGUF_MAGIC

* gguf.py : reverse GGUF_MAGIC

* test-tokenizer-0.cpp : fix warning

* llama.cpp : print kv general.name

* llama.cpp : get special token kv and linefeed token id

* llama : print number of tensors per type + print arch + style

* tests : update vocab file with new magic

* editorconfig : fix whitespaces

* llama : re-order functions

* llama : remove C++ API + reorganize common source in /common dir

* llama : minor API updates

* llama : avoid hardcoded special tokens

* llama : fix MPI build

ggml-ci

* llama : introduce enum llama_vocab_type + remove hardcoded string constants

* convert-falcon-hf-to-gguf.py : falcon HF --> gguf conversion, not tested

* falcon-main.cpp : falcon inference example

* convert-falcon-hf-to-gguf.py : remove extra kv

* convert-gptneox-hf-to-gguf.py : remove extra kv

* convert-llama-7b-pth-to-gguf.py : remove extra kv

* convert-llama-hf-to-gguf.py : remove extra kv

* gguf.py : fix for falcon 40b

* falcon-main.cpp : fix for falcon 40b

* convert-falcon-hf-to-gguf.py : update ref

* convert-falcon-hf-to-gguf.py : add tensor data layout

* cmpnct_gpt2bpe.hpp : fixes

* falcon-main.cpp : fixes

* gptneox-main.cpp : fixes

* cmpnct_gpt2bpe.hpp : remove non-general stuff

* Update examples/server/README.md

Co-authored-by: slaren <slarengh@gmail.com>

* cmpnct_gpt2bpe.hpp : cleanup

* convert-llama-hf-to-gguf.py : special tokens

* convert-llama-7b-pth-to-gguf.py : special tokens

* convert-permute-debug.py : permute debug print

* convert-permute-debug-master.py : permute debug for master

* convert-permute-debug.py : change permute type of attn_q

* convert.py : 70b model working (change attn_q permute)

* Delete convert-permute-debug-master.py

* Delete convert-permute-debug.py

* convert-llama-hf-to-gguf.py : fix attn_q permute

* gguf.py : fix rope scale kv

* convert-llama-hf-to-gguf.py : rope scale and added tokens

* convert-llama-7b-pth-to-gguf.py : rope scale and added tokens

* llama.cpp : use rope scale kv

* convert-llama-7b-pth-to-gguf.py : rope scale fix

* convert-llama-hf-to-gguf.py : rope scale fix

* py : fix whitespace

* gguf : add Python script to convert GGMLv3 LLaMA models to GGUF (#2682)

* First pass at converting GGMLv3 LLaMA models to GGUF

* Cleanups, better output during conversion

* Fix vocab space conversion logic

* More vocab conversion fixes

* Add description to converted GGUF files

* Improve help text, expand warning

* Allow specifying name and description for output GGUF

* Allow overriding vocab and hyperparams from original model metadata

* Use correct params override var name

* Fix wrong type size for Q8_K

Better handling of original style metadata

* Set default value for gguf add_tensor raw_shape KW arg

* llama : improve token type support (#2668)

* Merge tokenizer fixes into the gguf branch.

* Add test vocabularies

* Adapt convert-new.py (and fix a clang-cl compiler error on windows)

* Improved tokenizer test

But does it work on MacOS?

* Improve token type support

- Added @klosax code to convert.py
- Improved token type support in vocabulary

* Exclude platform dependent tests

* More sentencepiece compatibility by eliminating magic numbers

* Restored accidentally removed comment

* llama : add API for token type

ggml-ci

* tests : use new tokenizer type API (#2692)

* Merge tokenizer fixes into the gguf branch.

* Add test vocabularies

* Adapt convert-new.py (and fix a clang-cl compiler error on windows)

* Improved tokenizer test

But does it work on MacOS?

* Improve token type support

- Added @klosax code to convert.py
- Improved token type support in vocabulary

* Exclude platform dependent tests

* More sentencepiece compatibility by eliminating magic numbers

* Restored accidentally removed comment

* Improve commentary

* Use token type API in test-tokenizer-1.cpp

* py : cosmetics

* readme : add notice about new file format

ggml-ci

---------

Co-authored-by: M. Yusuf Sarıgöz <yusufsarigoz@gmail.com>
Co-authored-by: klosax <131523366+klosax@users.noreply.github.com>
Co-authored-by: goerch <jhr.walter@t-online.de>
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Kerfuffle <44031344+KerfuffleV2@users.noreply.github.com>
2023-08-21 23:07:43 +03:00
slaren
9e232f0234
ggml : move all type info to ggml_type_traits (#2663) 2023-08-20 22:17:53 +02:00
Georgi Gerganov
99d29c0094
ggml : sync (custom ops) (#2537)
ggml-ci
2023-08-07 13:20:09 +03:00
slaren
a113689571
ggml : add graph tensor allocator (#2411)
* ggml : add graph tensor allocator

* ggml : don't calculate data pointer of unallocated tensors when creating a view with an offset

* ggml : refactor ggml_view_Nd into ggml_view_tensor_offset
2023-07-30 15:58:01 +02:00
slaren
5488fb789e
ggml : allocate graphs in a context (#2392)
* ggml : graph allocation in contexts

* allocate work buffer as a ggml_object in ggml_graph_compute_with_ctx

* llama.cpp : allocate graph in the context

* add GGML_PAD

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-07-26 15:56:53 +02:00
slaren
da1889834a
ggml : improve graph build time via hash table lookup (#2329)
* improve graph build time

* ggml_tensor : use 1 bit per flag

* use a hash table instead
2023-07-25 15:32:20 +03:00
slaren
41c674161f
make rms_norm_eps a parameter (#2374)
* make rms_norm_eps a parameter

* add rms_norm_eps to command line

* fix baby llama, test-grad0

* use scientific notation for eps param in the help

ggml-ci
2023-07-24 17:57:12 +02:00
Georgi Gerganov
5b2b2dc6ae
ggml : sync (unary ops refactor, static-correctness) (#2370)
* ggml : sync (unary ops, tests)

ggml-ci

* tests : remove unnecessary funcs
2023-07-24 14:46:21 +03:00
slaren
95a6c595e7
ggml: move op parameters from tensors to ggml_tensor::op_params (#2333)
* ggml: move op parameters from tensors to ggml_tensor::op_params

* alibi: use memcpy for float params

* remove `src[1] = NULL` in ops
2023-07-23 14:36:02 +02:00
Georgi Gerganov
513f861953
ggml : fix rope args order + assert (#2054) 2023-07-21 14:51:34 +03:00
Xiao-Yong Jin
6e7cca4047
llama : add custom RoPE (#2054)
* Implement customizable RoPE

The original RoPE has pre-defined parameters

theta_i = 10000^(−2(i−1)/d), for i in [1, 2, ..., d/2]

Our customizable RoPE, ggml_rope_custom_inplace, uses

theta_i = scale * base^(−2(i−1)/d), for i in [1, 2, ..., d/2]

with the default matches the original

scale = 1.0
base = 10000

The new command line arguments
--rope-freq-base
--rope-freq-scale
set the two new RoPE parameter.

Recent researches show changing these two parameters extends the context limit with minimal loss.

1. Extending Context to 8K
   kaiokendev
   https://kaiokendev.github.io/til#extending-context-to-8k

2. Extending Context Window of Large Language Models via Positional Interpolation
   Shouyuan Chen, Sherman Wong, Liangjian Chen, Yuandong Tian
   https://arxiv.org/abs/2306.15595

3. NTK-Aware Scaled RoPE allows LLaMA models to have extended (8k+) context size without any fine-tuning and minimal perplexity degradation.
   https://www.reddit.com/user/bloc97
   https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/

For the bold, try adding the following command line parameters to your favorite model:
-c 16384 --rope-freq-base 80000 --rope-freq-scale 0.5

* ggml-metal: fix custom rope

* common: fix argument names in help

* llama: increase MEM_REQ_EVAL for MODEL_3B

It avoids crashing for quantized weights on CPU.
Better ways to calculate the required buffer size would be better.

* llama: make MEM_REQ_EVAL depend on n_ctx

* server: use proper Content-Type in curl examples

Without the header Content-Type: application/json, curl will POST with
Content-Type: application/x-www-form-urlencoded

Though our simple server doesn't care, the httplib.h used has a limit
with CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 8192

With Content-Type: application/json, we can send large json data.

* style : minor fixes, mostly indentations

* ggml : fix asserts

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-07-15 13:34:16 +03:00
Georgi Gerganov
4523d10d0c ggml : add ggml_pool_1d and ggml_pool_2d 2023-07-12 20:32:15 +03:00
Georgi Gerganov
20d7740a9b
ggml : sync (abort callback, mul / add broadcast, fix alibi) (#2183) 2023-07-11 22:53:34 +03:00
Spencer Sutton
5bf2a27718
ggml : remove src0 and src1 from ggml_tensor and rename opt to src (#2178)
* Add ggml changes

* Update train-text-from-scratch for change

* mpi : adapt to new ggml_tensor->src

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-07-11 19:31:10 +03:00
Qingyou Meng
1d656d6360
ggml : change ggml_graph_compute() API to not require context (#1999)
* ggml_graph_compute: deprecate using ggml_context, try resolve issue #287

* rewrite: no longer consider backward compitability; plan and make_plan

* minor: rename ctx as plan; const

* remove ggml_graph_compute from tests/test-grad0.c, but current change breaks backward

* add static ggml_graph_compute_sugar()

* minor: update comments

* reusable buffers

* ggml : more consistent naming + metal fixes

* ggml : fix docs

* tests : disable grad / opt + minor naming changes

* ggml : add ggml_graph_compute_with_ctx()

- backwards compatible API
- deduplicates a lot of copy-paste

* ci : enable test-grad0

* examples : factor out plan allocation into a helper function

* llama : factor out plan stuff into a helper function

* ci : fix env

* llama : fix duplicate symbols + refactor example benchmark

* ggml : remove obsolete assert + refactor n_tasks section

* ggml : fix indentation in switch

* llama : avoid unnecessary bool

* ggml : remove comments from source file and match order in header

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-07-07 19:24:01 +03:00
Georgi Gerganov
dfd9fce6d6
ggml : fix restrict usage 2023-07-06 19:41:31 +03:00
Stephan Walter
1b107b8550
ggml : generalize quantize_fns for simpler FP16 handling (#1237)
* Generalize quantize_fns for simpler FP16 handling

* Remove call to ggml_cuda_mul_mat_get_wsize

* ci : disable FMA for mac os actions

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-07-05 19:13:06 +03:00
Georgi Gerganov
ed9a54e512
ggml : sync latest (new ops, macros, refactoring) (#2106)
- add ggml_argmax()
- add ggml_tanh()
- add ggml_elu()
- refactor ggml_conv_1d() and variants
- refactor ggml_conv_2d() and variants
- add helper macros to reduce code duplication in ggml.c
2023-07-04 21:54:11 +03:00
Qingyou Meng
b1ca8f36a9
ggml : disable GGML_TASK_INIT and GGML_TASK_FINALIZE by default (#1995)
Will not be scheduled unless explicitly enabled.
2023-07-01 18:42:43 +03:00
Georgi Gerganov
d9779021bd
ggml : add support for ChatGLM RoPE 2023-06-27 00:06:51 +03:00
David Yang
eaa6ca5a61
ggml : increase max tensor name + clean up compiler warnings in train-text (#1988)
* Clean up compiler warnings in train-text

Some brackets to disambiguate order of operations

* Increase GGML_MAX_NAME

Avoiding strncpy danger in train-text-from-scratch and reducing potential future name length issues
2023-06-26 22:45:32 +03:00
zrm
b853d45601
ggml : add NUMA support (#1556)
* detect NUMA systems and pin work threads to nodes (linux)

* disable mmap prefetch/readahead for NUMA systems

* avoid sending finalize op to thread pool if it does nothing

* silence robot

* fix args

* make --numa a param

* recommendation that n_nodes evenly divide n_threads did not warrant such aggressive enforcement

* lower synchronization overhead

* statically allocate

* move numa state to g_state

* add description for --numa

* ggml : minor style changes

* ggml : minor style + try fix sanitizer build

* llama : allow to initialize backend with NUMA support

* llama : avoid ggml include in llama-util.h

* ggml : style / formatting

* ggml : fix handling of ops with n_threads > n_tasks > 1

* server : utilize numa parameter

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-06-26 20:57:59 +03:00
Georgi Gerganov
bd34cdde38
ggml : sync latest ggml (custom operators) 2023-06-25 14:25:08 +03:00
slaren
f2c754e1c3
ggml : improve ggml_graph_dump_dot, add ggml_format_name (#1978)
* Improve ggml_graph_dump_dot, add ggml_format_name

* add more automatic names to view ops

* fix name of copies
2023-06-24 13:57:18 +03:00
Georgi Gerganov
b97ca431db
ggml : sync latest ggml repo (#1924)
* ggml : sync latest ggml repo

* ggml : remove unused comments

* ggml : asserts
2023-06-19 18:12:33 +03:00
Georgi Gerganov
ce2c7d72e2
metal : handle buffers larger than device's maxBufferLength (#1826)
* metal : handle buffers larger than device's maxBufferLength

* metal : print more verbose device info + handle errors

* metal : fix prints for overlapping views

* metal : minimize view overlap to try to utilize device memory better
2023-06-18 09:09:47 +03:00
Johannes Gäßler
254a7a7a5f
CUDA full GPU acceleration, KV cache in VRAM (#1827)
* Fixed CUDA RoPE

* ggml_cuda_mul_mat_vec_p021

* ggml_cuda_scale

* ggml_cuda_diag_mask_inf

* ggml_is_permuted

* ggml_cuda_cpy

* flatten rows for ggml_cuda_op

* Added a --low-vram option

* Fixed Windows performance

* Fixed LLAMA_CUDA_DMMV_Y > 1 for WizardLM
2023-06-14 19:47:19 +02:00
xaedes
e32089b2c2
train : improved training-from-scratch example (#1652)
* add python wrapper

https://gist.github.com/abetlen/2b90e5f153f6efd00931d098de5c73ce

* fix decoding error. adds errors=ignore parameter

* add python bindings for functions to get and set the whole llama state
(rng, logits, embedding and kv_cache)

* update python bindings

* add text generating baby-llama from scratch example

* fix race condition bug in ggml_compute_forward_diag_mask_f32

* implement ggml_soft_max_back for more performant backward pass of soft_max

avoids creating big intermediate matrices of size n_embd x n_embd for llama layers and n_vocab x n_vocab for cross entropy loss

* improve softmax backward pass

go from quadratic runtime to linear runtime by simplifying the formulas

* fix race condition bug in non-inplace ggml_compute_forward_diag_mask_f32

memcpy needs to be synchronized across threads to avoid race conditions.
=> do it in INIT phase

* fix bug in ggml_compute_forward_soft_max_back_f32 on DEBUG build

* improve performance of mul_mat backward pass

avoid transpose by using mul_mat with swapped arguments

* avoid printing too much newlines in baby-llama-text

* activate threading in baby-llama-text

* add ggml_out_prod and use it for mul_mat backward pass for improved performance

performance stats report improvement from 37 seconds to 16 seconds runtime during my training tests

* better weight initialization improves training convergence at start

* better weight initialization improves training convergence at start

* improve ggml_out_prod performance

- change iteration order (>15s -> 10s runtime)
- parallelize over one more dimension: over dst matrix rows (10s -> <5s runtime)

* add llama sampler, shuffle samples and constrain sampling to tokens occurring in train data

* fix get_samples call, add model tensor names, increase model size, start training samples after newline

* save train trained model to checkpoint and load model to be trained from checkpoint

* use inplace functions where possible

* initialize rng with srand

* use different arguments for input and output checkpoint

* ggml fixes to support backward pass on inplace operations

* remove duplicate include

* fix cross entropy loss

- add target probabilities for each sample which is then used in cross entropy loss

* print used memory before and after optimization

* sample with non-greedy sampling parameters at the end of training

* add cmake target for baby-llama-text

* add ggml_add1_inplace to header

* enable gradient propagation for inplace add1 and scale operations

those functions backward passes don't need the original src0, so they also work when forward is inplace

* implement AdamW in ggml_opt_adam by adding weight decay parameter (default 0.001f)

also add a schedule parameter (default 1.0f) that can be used to scale alpha and decay according to learning schedule.
setting the decay parameter to zero disables AdamW resulting in normal Adam optimizer.

since the difference between Adam and AdamW is minimal it is not implemented as another optimizer, but integrated into the existing Adam optimizer.

* use inplace operations in cross_entropy_loss

* fix random weight initialization scale

* add missing default parameters for adam optimizer

* add ggml_opt_context, so that we can properly resume training

otherwise the optimizer states, tracking statistics about the error function and its derivates,
will reset to zero each time ggml_opt is called, hindering convergence on resumed training.

now the optimizer context and all its memory is stored in a separate struct.

* fix bug in llama_sample_token_mirostat_v2

when all candidates are filtered out through mu threshold, the following soft_max operation will fail.
so keep at least one.

* add forward function without using cache, for more performant training

during training on whole samples no cache is required.
removing the cache and simplifying the remaining code results in performance and memory usage improvement.

* print suppressed newline tokens as string "\n"

printing too much actual newlines is suppressed to avoid flooding the console.

* store optimizer state in training checkpoint and add learning schedule

persistent optimizer state allows to resume training without resetting the optimizer
learning schedule consists of linear warmup ramp followed by cosine decay with restarts

* remove unused functions

* fix bug in get_samples which corrupted training targets

* save checkpoint only when it was trained

* simplify code

* remove trailing whitespace

* simplify backward pass for SQRT

* replace inefficient repeat backward pass with dedicated repeat_back operation

* add ggml_cross_entropy_loss with backward pass for faster training

cross entropy loss can also be implemented using softmax and log, but as dedicated operation it is faster and especially avoids unnecessary memory overhead.

* add tests for cross_entropy_loss backward pass

finite differences regularly results in estimated gradient of zero, despite the backward pass giving non zero gradient.
_probably_ the finite differences fails due to numerical issues

* use ggml_cross_entropy_loss in text training example

* remove trailing whitespace

* slightly improve how cross entropy loss is compute

btw: directly implemented cross entropy loss seems to have way lower magnitudes than when implemented with softmax and log.
probably the input to log gets closer to zero due to float numerics.
maybe the multiplication by (1.0-eps)/sum is more accurate..

* add llama_get_vocab to get the vocabulary as output parameters

* set default model.type for unknown models with few layers

* add export of training checkpoint to llama compatible model file

* get vocabulary for exporting training checkpoint to llama compatible model file

* implement backward pass of flash attention

* bugfixes for backward pass of flash attention

* test flash attention backward pass

need to set loose error bounds to pass.
the finitie differences are close to numeric limits and often return quite different values than the backward pass.
reducing eps further lets the gradients vanish completely.
likewise setting eps to big results in wronger values.
the softmax in the middle of the function is probably the most responsible for the numeric issues using finite differences.

* add option to train with flash attention and move options to the top of the main function

training from scratch also works with flash attention
training convergence and generation results after fix number of iterations are worse than when not using flash attention.
maybe there still lingers a bug in the flash attention backward pass?
but training works, just with slower convergence.

flash attention is still worth to use, because it requires way less memory and is faster with high n_ctx

* add train_params and command line option parser

* remove unnecessary comments

* add train params to specify memory size

* remove python bindings

* rename baby-llama-text to train-text-from-scratch

* replace auto parameters in lambda function

* add #include <climits>

* add explicit cast to fix compile error

"error: non-constant-expression cannot be narrowed from type 'int64_t' (aka 'long long') to 'uint32_t' (aka 'unsigned int') in initializer list [-Wc++11-narrowing]"

* remove trailing whitespace

* add ggml_opt_resume_g which accepts forward and backward cgraphs

* fix formulas in comments

* bug fix for ggml_compute_forward_get_rows_back_f32

the result should be set to zero, not to whatever data is in opt0

* improve training memory usage with scratch buffers

instead of relying on the automatic backward pass, we manually create the graph for the backward pass.
it turns out that all backward pass operations need only temporary memory which can be reused after each layer.

will compute backward pass for ALL model parameters

* add option to use scratch buffers in training or not

make it configurable because currently training with scratch buffers implies flash attention and optimization over all parameters.

* ci : disable temporary

* store view offset and permute axes in opt[0] instead of storing it in padding

use memcpy to store offset, because offset is of type size_t.
when storing it as int32_t offset would have to be smaller than 2^31 which is not necessarily true.

* minor : fix compile warnings + minor style changes

* fix bug in threaded indices calculation of ggml_compute_forward_flash_attn_back_f32

* store view offset like in master branch

* bug fix in forward_batch_wo_cache_flash_attn_train

* scratch buffer bug fixes in forward_batch_wo_cache_flash_attn_train

data of permute and reshape is the same as their input.
if we want to preserve the output of permute/reshape, we also need to preserve their inputs.

replace reshape(src0, src1) with reshape_nd calls so that we don't need src1.

replace (temporary) t03 with ggml_repeat(ctx0, layer.attention_norm, t02).
in the future we could also use the new broadcasting ggml_mul to avoid these repeat calls.
for this we need backward pass of broadcasting ggml_mul.

* remove unnecessary scratch buffer 0

buf 0 is persistent memory, so we can just disable scratch for this by using buf -1

* avoid creating unnecessary grad tensors

previously we need to create grads for model parameters, so that expand(..) correctly populates cgraph->leafs & cgraph->grads
this wasted memory, because unnecessary grad for each op were automatically created:
the automatically generated grad was unnecessary because we later manually set the grad (e.g. t35->grad = expand(gb, ...) ).
this discarded the automatically generated grad resulting in wasted memory.

improved this by changing expand(..) to not use ggml_build_forward_expand.
expand set cgraph->nodes but not the leafs.
cgraph->leafs & cgraph->grads are set in another pass after the last expand call.

* print used training seed

* zero initialize gfbuf and gbbuf

* ci : re-enable workflows + add README for training

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-06-13 22:04:40 +03:00
Johannes Gäßler
17366df842
Multi GPU support, CUDA refactor, CUDA scratch buffer (#1703)
* CUDA multi GPU + scratch

ggml_cuda_compute_forward

Tensor parallelism

ggml_cuda_add

ggml_cuda_rms_norm

ggml_cuda_silu

CUDA scratch buffer

--main-gpu CLI option
2023-06-06 21:33:23 +02:00
Kawrakow
99009e72f8
ggml : add SOTA 2,3,4,5,6 bit k-quantizations (#1684)
* Starting to add k-quantization to ggml

I think it is better to have quantization separate from
ggml. For now just adding the k-quants there, but it would be
better to also factor out the existing ggml quantizations.

* Adding Q3_K and Q8_K (de)-quantization

* Q3_K now working on CUDA and AVX2/scalar

CUDA is not ideal - ~50% slower than Q4_0 for
single token prediction, about the same in batch
mode (perplexity). CPU single token is ~55 ms
(on Ryzen 7950X).

* Some improvement for Q3_K on CUDA

It is now ~22.5 ms/token on my GPU, so ~30% slower than Q4_0.

* Some more CUDA optimizations for Q3_K

Single token is now 20.5 ms/token (~20% slower than Q4_0).
Perplexity is on par with Q4_0.

* Adding Q4_K - scalar, AVX2, CUDA

Performance is the same or perhaps very slightly better than Q4_0 on the CPU.
On the GPU, single token prediction is ~10% better than Q4_0,
batch mode (perplexity is about the same).

* Adding Q6_K - scalar, AVX2, CUDA

Performance is ~40% lower compared to Q4_K on the CPU.
This is to be expected, considering that we are memory bound
on the CPU and the 6-bit model is ~44% larger than the 4-bit.
On the GPU, single token prediction is ~6% lower than Q4_0,
batch mode (perplexity) is even closer (but still slower).

* Adding Q5_K - scalar, AVX2, CUDA

Performance is ~20% lower compared to Q4_K on the CPU.
This is to be expected, considering that we are memory bound
on the CPU and the 5-bit model is ~22% larger than the 4-bit.
On the GPU, single token prediction is about the same as Q4_0
for both, single token and batch prediction.

* Per convention, all QX_K quantizations use Q5_K for output.weight

* Adding quantization mixes

* Quantization mixes: didn't quite get what I wanted in the last commit

* Q4_K dot product for ARM_NEON

* Q6_K dot product for ARM_NEON

* Q5_K dot product for ARM_NEON

* Adding Q3_K dot for ARM_NEON

It is 22% slower than Q4_K, despite the smaller model size.
On x86_64, where we are memory bound, the Q3_K model is
quite a bit faster than Q4_K.

* A very slightly faster ARM_NEON Q3_K dot

* Adding Q2_K - just CUDA for now

Token prediction is pretty good - about 15.5 ms on a RTX 4080.
Perplexity is about the same as Q4_K.

* Adding scalar and AVX2 Q2_K dot

* Adding ARM_NEON Q2_K dot

About the same performance as Q4_K.

* A slightly faster ARM_NEON Q2_K dot

Single token prediction is now ~36 ms on M2 Max.
The code is much simpler too.

* Fixed bug in Q2_K CUDA dot product kernel

Stranegly enough, for the few prompts I tried with the 7B model
the responses looked perfectly reasonable. Only realized something
is not quite right when I tried the larger models and started getting
nonse back.

In any case, Q2_K single token evaluation time on an RTX 4080 in a Ryzen7950X
box iusing CUDA and model fully loaded on the GPU are
  ~15.5 ms for 7B, ~25.4 ms for 13B, and ~55.8 ms for 30B.
The max number of layers that fit in VRAM for The 65B is 32.
With that, we get ~330 ms per token, which is not that much faster
than just running on the CPU (~470 ms per token).

* Don't print zeros/NaNs when no count histogram has been collected

* A 10% faster CUDA vector dot kernel for Q3_K

Q3_K is now running at ~18.5 ms / token on CUDA,
so the gap to Q4_0 is only 10%.
It seems memory acccess pattern is more important for
performance than the amount of computation the kernel
does.

* A slightly daster Q4_K AVX2 dot product

For perplexity, where we are less memory bound, time per
pass drops by ~5%. Barely measurable difference for single
token prediction.

* A slightly faster ARM_NEON A4_K dot product

* Minor

* Fix quantization error test

We cannot possibly be expecting rmse < 0.002 for 2- and 3-bit
quantization variants.

* Fix docker build

I have been sloppy with vector reinterpret casts on ARM_NEON.
It seems clang is very forgiving in that regard.

* Added forgotten ggml.o dependence on k_quants.h to the Makefile

* Had unintentionally committed the Makefile with -Ofast enabled

* ggml : rename k_quants -> ggml-quants-k, use lowercase in code

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-06-05 22:56:18 +03:00
Georgi Gerganov
ecb217db4f
llama : Metal inference (#1642)
* mtl : export the LLaMA computation graph

* ci : disable temporary

* mtl : adapt the MNIST example as starter

* mtl : no need for mtl-export tool, add cli arg for main instead

* mtl : export just a small part of the graph for now to make it easier

* mtl : move MSL code into separate file for easy editing

* mtl : initial get_rows_q4_0 kernel

* mtl : confirmed get_rows_q4_0 is working correctly

* mtl : add rms_norm kernel + confirm working

* mtl : add mul kernel + confirm working

* mtl : initial mul_mat Q4 kernel (wrong results)

* mtl : mul_mat fixes (still wrong)

* mtl : another mul_mat Q4 (still does not work)

* mtl : working mul_mat q4

* ggml : fix handling of "view" ops in ggml_graph_import()

* mtl : add rope kernel

* mtl : add reshape and transpose handling

* ggml : store offset as opt arg for ggml_view_xd() operators

* mtl : add cpy kernel + handle view ops

* mtl : confirm f16 x f32 attention mul mat

* mtl : add scale kernel

* mtl : add diag_mask_inf kernel

* mtl : fix soft_max kernel

* ggml : update ggml_nbytes() to handle non-contiguous tensors

* mtl : verify V tensor contents

* mtl : add f32 -> f32 cpy kernel

* mtl : add silu kernel

* mtl : add non-broadcast mul kernel

* mtl : full GPU inference of the computation graph

* mtl : optimize rms_norm and soft_max kernels

* mtl : add f16 mat x f32 vec multiplication kernel

* mtl : fix bug in f16 x f32 mul mat + speed-up computation

* mtl : faster mul_mat_q4_0_f32 kernel

* mtl : fix kernel signature + roll inner loop

* mtl : more threads for rms_norm + better timing

* mtl : remove printfs from inner loop

* mtl : simplify implementation

* mtl : add save/load vocab to ggml file

* mtl : plug Metal inference into llama.cpp (very quick-n-dirty)

* mtl : make it work with main example

Lots of hacks but at least now it generates text

* mtl : preparing for merge

* mtl : clean-up ggml mtl interface + suport scratch / inplace

* mtl : remove temp / debug code

* metal : final refactoring and simplification

* Revert "ci : disable temporary"

This reverts commit 98c267fc77.

* metal : add comments

* metal : clean-up stuff, fix typos

* readme : add Metal instructions

* readme : add example for main
2023-06-04 23:34:30 +03:00
Georgi Gerganov
7552ac5863
ggml : sync cgraph import / export API 2023-05-29 19:31:44 +03:00
Georgi Gerganov
93618031c7
ggml : add ggml_tensor_overhead() 2023-05-27 16:19:56 +03:00
Georgi Gerganov
bdbda1b17a
ggml : sync ggml core (minor additions, e.g. ggml_get_tensor_by_name()) 2023-05-27 12:23:16 +03:00
0cc4m
2e6cd4b025
OpenCL Token Generation Acceleration (#1459)
* Move back to C++ for OpenCL

* Refactor OpenCL code to work more like the CUDA code, add missing functions

* Deduplicate dequant kernels

* Add OpenCL compile options

* Use compile args for preprocessing constants

* Restore default platform + device selection by id behavior

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Henri Vasserman <henv@hot.ee>
2023-05-23 00:33:24 +03:00
Georgi Gerganov
3de84b2606
ggml : add ggml_clamp() (#1539)
* ggml : add ggml_clamp()

* ggml : indentation
2023-05-20 15:34:45 +03:00
Georgi Gerganov
2d5db48371
ggml : use F16 instead of F32 in Q4_0, Q4_1, Q8_0 (#1508)
* ggml : use F16 instead of F32 in Q4_0, Q4_1 and Q8_0

* llama : bump LLAMA_FILE_VERSION to 3

* cuda : update Q4 and Q8 dequantize kernels

* ggml : fix AVX dot products

* readme : update performance table + hot topics
2023-05-19 22:17:18 +03:00
Georgi Gerganov
13c351ad72
ggml : various fixes (#1450)
- `ggml_rope()`
- `ggml_diag_mask_inf()` multi-threaded
- compatibility with scratch buffers
2023-05-14 18:22:50 +03:00
Georgi Gerganov
601a033475
ggml : add GGML_QNT_VERSION to track quantization format changes
https://github.com/ggerganov/ggml/issues/150#issuecomment-1546625668
2023-05-14 10:20:19 +03:00
Johannes Gäßler
905d87b70a
ggml : GPU-accelerated token generation (#1412)
* CUDA kernel for q4_0 dequant. + mat. vec. mult.

* Added q4_1 via template

* Added missing __syncthreads();

* --gpu_layers -> --gpu-layers

* Shorter dequantize_mul_mat_vec line

* q5_0 dequantize_mul_mat kernel

* More readable dequantize_mul_mat_vec logic

* dequantize_mul_mat_vec kernels for q5_1, q8_0, f16

* llama : offload "output" tensor to GPU too + coding style fixes

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-05-13 16:38:36 +03:00
xaedes
f954edda93
ggml : implement backward pass for llama + small training-llama-from-scratch example (#1360)
* implement 8 of 14 missing backward pass operations used by llama

- GGML_OP_ADD_AT
- GGML_OP_CPY
- GGML_OP_MUL_MAT (src0.grad)
- GGML_OP_PERMUTE
- GGML_OP_RESHAPE
- GGML_OP_SCALE
- GGML_OP_TRANSPOSE
- GGML_OP_VIEW

implement additional ggml operation GGML_OP_ADD_AT, which is necessary for backward pass of GGML_OP_VIEW.

this operation adds src1 to src0 with data offset, i.e. to view(src0, ..., offset).
the values are return in a tensor size of src0. values outside of [data+offset:data+offset+nbytes(src1)] are just the original values from src0.

still missing backward passes for llama:

- GGML_OP_DIAG_MASK_INF
- GGML_OP_GET_ROWS
- GGML_OP_RMS_NORM
- GGML_OP_ROPE
- GGML_OP_SILU
- GGML_OP_SOFT_MAX

* implement 5 of 6 missing backward pass operations used by llama

- GGML_OP_DIAG_MASK_INF
- GGML_OP_GET_ROWS
- GGML_OP_RMS_NORM
- GGML_OP_SILU
- GGML_OP_SOFT_MAX

add necessary ggml operations GGML_OP_ADD1, GGML_OP_SILU_BACK, GGML_OP_RMS_NORM_BACK, GGML_OP_DIAG_MASK_ZERO, and GGML_OP_ROPE_BACK

GGML_OP_ADD1 is necessary to add a scalar value in the backward pass of GGML_OP_SOFT_MAX
GGML_OP_ADD1 could also be replaced by using GGML_OP_ADD and GGML_OP_REPEAT, but the performance would be worse. additionally GGML_OP_REPEAT will return unexpected value when the the input to GGML_OP_SOFT_MAX contains only a single scalar. in this case GGML_OP_REPEAT will not return the value that should be repeated (src1) but the value which shape the result should take (src0). So in this case it can not replace GGML_OP_ADD1.

GGML_OP_SILU_BACK, GGML_OP_RMS_NORM_BACK and GGML_OP_ROPE_BACK are necessary for backward pass of GGML_OP_SILU, GGML_OP_RMS_NORM and GGML_OP_ROPE. The backward pass for these functions cannot be easily composed of existing operations. Since the backward pass builds a computation graph we need operations forward pass implementations of the the required backward passes. Sounds a bit confusing at first, I know...

GGML_OP_DIAG_MASK_ZERO is necessary for backward pass of GGML_OP_DIAG_MASK_INF.

Some operations where previously inplace-only. for backward pass there needs to be non-inplace variants.
staying consistent with other operations that have non-inplace and inplace variants, the operations are changed to non-inplace and
functions with "_inplace" are added which are inplace.
in llama we need to call the inplace variants so that it is implemented as before.
for llama backward pass we need to use the non-inplace variants.

still not completely implemented backward passes for llama:

- GGML_OP_ROPE: needs forward pass for GGML_OP_ROPE_BACK
- GGML_OP_GET_ROWS: only necessary for tokenizer

* norm & rms_norm can not be threaded:

after investigation rms norm for quite some time I come to the conclusion that neither norm, nor rms_norm can be threaded, because we need mean over all items, not just of the slices each thread sees.

* remove already resolved TODO

* implement backward pass of ggml_rope and ggml_rope_back

* implement backward pass for ggml_get_rows and for new operation ggml_get_rows_back

* add test-grad0.c

* use GGML_PRINT_DEBUG for debug messages which will otherwise flood the console

* test both gradients of mul_mat

* disable graph dot export as it floods console

* bug fixes for silu_back

* successfully test silu backward

* bug fix for scale backward pass

use sum instead of mean for gradient of scalar scale parameter

* successfully test scale backward

* improve performance of sum backward pass

use add1(x,y) instead of add(x,repeat(y,x))

* improve performance of sqr backward pass

use scale(x,y) instead of mul(x,repeat(y,x))

* successfully test rope backward

* bug fix for cpy backward pass

* successfully test cpy backward

* bug fix for reshape backward pass

* successfully test reshape backward

* add test-opt.c

this uses ggml_opt to train a,b for minimal e=sum(sqr(c - a*b)) for random initial a,b,c

* correctly implement softmax backward pass using new operation ggml_diag

ggml_diag constructs diagonal matrices with entries.
ggml_diag(shape[a,1,c,d]) -> shape[a,a,c,d]

* successfully test soft_max backward

* align shape annotations

* add shape annotations for llama

* de-duplicate ggml_forward_dup code taking care of contiguous tensors of same type.

with this we can duplicate tensor of any typ as long as they are contiguous.

* fix ggml_compute_forward_dup_same_cont for when nelements < nthreads

when more threads are used than elements exist ie1 was less than ie0, resulting in invalid negative byte count argument in memcpy

* bug fix for add_at forward

required for view backward pass

src0 values must be copied to dst, because during addition we don't touch all dst elements in contrast to the normal add function.

* successfully test view backward

* minor code format improvement

* fix ggml_forward_add functions to work correctly with transposed tensors

uses the same logic as in ggml_compute_forward_add_q_f32, but make it consistent across all ggml_compute_forward_add_... functions.
this also slightly changes the mem access pattern of the different threads to works as in ggml_compute_forward_add_q_f32.

* fix ggml_forward_add1 functions to work correctly with transposed tensors

uses the same logic as in ggml_compute_forward_add1_q_f32, but make it consistent across all ggml_compute_forward_add1_... functions.
this also slightly changes the mem access pattern of the different threads to works as in ggml_compute_forward_add1_q_f32.

* test-grad0.c : add print_elements to help with debugging

* successfully test permute backward

* some minor test-grad0 fixes

* fix sub, mul and div functions to work correctly with transposed tensors

uses the same logic as in add

* implement ggml_cont backward pass

* successfully test transpose backward and permute for all permutations

also test sub, mul and div up to max n_dims

* test-grad0.c add TODO for view_2d and view_3d

add_at (required for view backward pass) is a bit tricky for n_dims > 1.

* fix comments

* successfully test diag_mask_inf and diag_mask_zero backward

* test-grad0 : fix test for div

nargs and ndims was swapped, corrupting the stack

* fix diag_mask to work with non-inplace input

* move dup call into the actual add_at functions

* fix get rows backward pass

* successfully test get_rows backward

* fix view backward pass

add nb parameters to add_at like in view.
together with offset they define how to view dst and src0 during the add_at operation.

* successfully test backward pass of view_1d, view_2d and view_3d

* fix backward pass for rms_norm

I would have used formulas from other frameworks, but they differed so I could not decide which is correct.
Instead it was derived here in comment using manual forward-backward automatic differention of rms_norm and simplification.

* successfully test backward pass of rms_norm

some tests may fail when gradients are large.
could not find a satisfying configuration to check for abs error and relative error that passes all tests while still actually testing the results with tight enough error bounds.
when looking at the values the "failed" tests look actually ok. for example:

rms_norm: ndims=2, i=0, k=2, x0=0.000153, xm=0.000053, xp=0.000253, f0=0.278594, f1=0.086213, g0=961.905457, g1=966.064941, eps=0.000100, error_abs=4.159485, error_rel=0.004324

it is due to the test logic in check_gradients that they fail.

* add todos for llama backward pass

- implementation for ADD1 backward pass should probably use sum instead of mean (but this backward pass is not required)
- repeat is not yet tested and looks like it only works for single element src0 inputs.

* add operation ggml_sum_rows

ggml_sum_rows(shape[a,b,c,d]) -> shape[1,b,c,d]

* add missing GGML_OP_SUM_ROWS

* fix backward pass for repeat

requires ggml_sum_rows

* successfully test backward pass of repeat

* update quantization types in switch-case of add_at and add1

* add baby-llama example training a very small llama model from scratch to output a sinusoidal wave.

had to increase maximum number of optimization parameters to train from scratch.

* fix softmax in baby-llama example

* switching from training with adam to lbfgs produces much better results in the baby-llama example

* train with two examples, creating new tensors each time..

* fix bug when using ggml_opt to optimize params in one context and use a renewable context for eval and opt

when not keeping gradients of model parameters they are overwritten by tensors created by opt, which may be invalid after opt context is renewed.
so we need to keep the original gradients and make dups for opt

* train on multiple examples, generate & print tokens with trained model afterwards

ctx0 for evaluation and optimization is renewed for each sample

* add ggml_reshape_1d, ggml_reshape_4d and ggml_view_4d

* fix soft_max backward pass for input->ne[1] != 1

* add ggml_log operation necessary for cross entropy loss

* add test for ggml_log gradients

* implement backward pass for ggml_sum_rows, necessary for cross entropy loss

* implement ggml_repeat support for rank > 2 tensors

* add test for ggml_sum_rows gradients

* fix training get_example_targets

predict the next token, not the current token!

* add square_error_loss and cross_entropy_loss functions

* optimize loss over multiple samples

this increases computation graph, need parallel batched forward for more efficiency.

* fix backward pass for add_at and change arguments to have same order as in view

* add ggml_set(ctx, a, b) to set b in view of a and return modified a

necessary to set values into kv_self cache and properly propagate the gradients

* fix kv_self gradients for training

use ggml_set instead of ggml_cpy to set kv_self cache with properly propagating gradients

* replace inplace operations for training with copying operations to allow gradient propagation

* add GGML_ASSERT to catch ggml_rope and back value errors

* add trainable lora-only model with all big matrices C split into A,B with A*B=C

this is not a lora-finetune, but the whole model changed to have only low-rank "lora" matrices.

training this instead of the normal model resulted in much worse results though...

* vastly improve training results

instead of logit targets 0 and 1 use -1 and +1.

* shorten code using a variable

* change name of GGML_OP_ADD_AT to GGML_OP_ACC

* smaller default values for baby llama model parameters

* update static assert of GGML_OP_COUNT

* remove shape annotations in llama_eval_internal

* revert disabling of threading for rms_norm and norm

* rename print functions in baby-llama example

* fix call to ggml_set_name

* add missing include for strcmp, etc

* remove trailing whitespace

* reduce number of test-grad0 iterations

avoid exceeding timeout of automated tests

* remove busy loop that was used as sleep for slower sinus wave generation

* disable slow tests grad0 and opt to avoid exceeding timeouts

* c++ in baby-llama example

use c++ includes instead of c includes
use std::min, std::max instead of MIN, MAX macros

* c++ in baby-llama example

use c++ includes instead of c includes
use std::min, std::max instead of MIN, MAX macros

* ggml : fix compiler warnings + cosmetic changes

* ggml : fix nullptr derefs in GGML_OP_CONT and GGML_OP_RESHAPE back

* swap arguments to vDSP_vdiv call

documentation for vDSP_vdiv states: "Note that B comes before A!"

* swap arguments to vDSP_vdiv call

documentation for vDSP_vdiv states: "Note that B comes before A!"

* ggml : swap vDSP_vsub args as per documentation

* add parallel batched forward function for baby-llama training

* cleanup code for batched training

* remove trailing whitespace

* minor : fix compiler warnings + indentation style

* ggml : fix null ptr deref in backward pass

* ggml : remove Q4_2 remnants

* ggml : fix clang-tidy warnings

* baby-llama : couple of clang-tidy warnings

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-05-13 15:56:40 +03:00
Georgi Gerganov
b9fd7eee57
ggml : remove bit shuffling (#1405)
* ggml : remove Q4_0 bit shufling (ARM NEON)

* ggml : remove Q4_1 bit shuffling (ARM NEON + reference)

* ggml : nibbles_from_floats() + bytes_from_nibbles() (ARM NEON)

* ggml : remove Q4_2 bit shuffling (WIP, BROKEN)

* ggml : remove Q5_0 bit shuffling (ARM NEON)

* ggml : 2x faster scalar implementations

* ggml : remove Q5_1 bit shuffling (ARM NEON + scalar)

* ggml : simplify scalar dot

* ggml : remove WASM SIMD bit shuffling + remove vzip for ARM 32-bit

* ggml : fix Q4_1 quantization

* ggml : update cuBLAS + normalize variable names

* ggml : remove Q4_2 mode

* ggml : minor formatting

* ggml : fix Q5_0 quantization

* scripts : add script for measuring the time per token

* AVX implementations (#1370)

* ggml : uniform 5th bit extraction

* llama : produce error upon loading old model files

* llama : fix model magic/version write

* ggml : speed-up Q5_0 + Q5_1 at 4 threads

* ggml : preserve old Q4 and Q5 formats

* ggml : simplify Q8_1 - no need for low / high sums anymore

* ggml : fix Q8_0 and Q8_1 rounding

* Revert "AVX implementations (#1370)"

This reverts commit 948d124837.

* ggml : fix AVX2 implementation

* sha : update hashes for 7B and 13B

* readme : update timings + remove warning banner

* llama : update v2 PR number to 1405

* ggml : fix WASM comments

* ggml : back to original bit order

* readme : add note that Q4 and Q5 have been changed

* llama : fix return for unknown version

---------

Co-authored-by: Stephan Walter <stephan@walter.name>
2023-05-12 00:23:08 +03:00
slaren
2d099e5193
ggml: add names to tensors (#1268)
* ggml: add names to tensors

* minor improvements to dot file formatting
2023-05-02 16:03:00 +02:00
slaren
58b367c2d7
cuBLAS: refactor and optimize f16 mat mul performance (#1259)
* cuBLAS: refactor, convert fp16 to fp32 on device

* cuBLAS: use multiple streams, choose smartly between mul_mat_q and mul_mat_f16

* fix build

* cuBLAS: update block_q5_1
2023-05-01 18:11:07 +02:00
Georgi Gerganov
6bc4400e67
ggml : add Q5 WASM SIMD + GGML_FTYPE 2023-04-30 19:07:43 +03:00
Georgi Gerganov
0b5a935099
ggml : fix visibility and unused warnings 2023-04-29 19:28:36 +03:00
Stephan Walter
36d19a603b
Remove Q4_3 which is no better than Q5 (#1218) 2023-04-28 23:10:43 +00:00
Georgi Gerganov
55390bcaf2
ggml : sync ggml (ggml_alibi) 2023-04-28 20:51:05 +03:00
0cc4m
7296c961d9
ggml : add CLBlast support (#1164)
* Allow use of OpenCL GPU-based BLAS using ClBlast instead of OpenBLAS for context processing

* Improve ClBlast implementation, avoid recreating buffers, remove redundant transfers

* Finish merge of ClBlast support

* Move CLBlast implementation to separate file

Add buffer reuse code (adapted from slaren's cuda implementation)

* Add q4_2 and q4_3 CLBlast support, improve code

* Double CLBlast speed by disabling OpenBLAS thread workaround

Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>
Co-authored-by: slaren <2141330+slaren@users.noreply.github.com>

* Fix device selection env variable names

* Fix cast in opencl kernels

* Add CLBlast to CMakeLists.txt

* Replace buffer pool with static buffers a, b, qb, c

Fix compile warnings

* Fix typos, use GGML_TYPE defines, improve code

* Improve btype dequant kernel selection code, add error if type is unsupported

* Improve code quality

* Move internal stuff out of header
* Use internal enums instead of CLBlast enums
* Remove leftover C++ includes and defines
* Make event use easier to read

Co-authored-by: Henri Vasserman <henv@hot.ee>

* Use c compiler for opencl files

* Simplify code, fix include

* First check error, then release event

* Make globals static, fix indentation

* Rename dequant kernels file to conform with other file names

* Fix import cl file name

---------

Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>
Co-authored-by: slaren <2141330+slaren@users.noreply.github.com>
Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-04-28 17:57:16 +03:00
Georgi Gerganov
574406dc7e
ggml : add Q5_0 and Q5_1 quantization (#1187)
* ggml : add Q5_0 quantization (cuBLAS only)

* ggml : fix Q5_0 qh -> uint32_t

* ggml : fix q5_0 histogram stats

* ggml : q5_0 scalar dot product

* ggml : q5_0 ARM NEON dot

* ggml : q5_0 more efficient ARM NEON using uint64_t masks

* ggml : rename Q5_0 -> Q5_1

* ggml : adding Q5_0 mode

* quantize : add Q5_0 and Q5_1 to map

* ggml : AVX2 optimizations for Q5_0, Q5_1 (#1195)

---------

Co-authored-by: Stephan Walter <stephan@walter.name>
2023-04-26 23:14:13 +03:00
Georgi Gerganov
7a32fcb3b2
ggml : add Q8_0 quantization format (rename the old one to Q8_1) (ARM NEON) (#1179)
* ggml : add Q8_0 quantization format (rename the old one to Q8_1)

* tests : fix test-quantize-fns

* ggml : finalize Q8_0 implementation

* ggml : use q4_0_q8_0 and q4_2_q8_0

* ggml : fix Q8_0 dot product bug (ARM)

* ggml : Q8_0 unroll x2

* ggml : fix bug - using wrong block type

* ggml : extend quantize_fns_t with "vec_dot_type"

* ggml : fix Q8_0 to use 255 values out of 256

* ggml : fix assert using wrong QK4_2 instead of QK4_3
2023-04-25 23:40:51 +03:00
Georgi Gerganov
8a0f8673ba
ggml : export symbols (#1155) 2023-04-24 22:18:25 +03:00
Georgi Gerganov
12b5900dbc
ggml : sync ggml (add GPT-NeoX RoPE implementation) 2023-04-20 23:32:59 +03:00
Kawrakow
38de86a711
llama : multi-threaded quantization (#1075)
* Multi-threading quantization.

Not much gain for simple quantizations, bit it will be important
for quantizations that require more CPU cycles.

* Multi-threading for quantize-stats

It now does the job in ~14 seconds on my Mac for
Q4_0, Q4_1 and Q4_2. Single-threaded it was taking
more than 2 minutes after adding the more elaborate
version of Q4_2.

* Reviewer comments

* Avoiding compiler confusion

After changing chunk_size to const int as suggested by
@ggerganov, clang and GCC starting to warn me that I don't
need to capture it in the lambda. So, I removed it from the
capture list. But that makes the MSVC build fail. So,
making it a constexpr to make every compiler happy.

* Still fighting with lambda captures in MSVC

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-04-20 20:42:27 +03:00
Georgi Gerganov
e0305ead3a
ggml : add Q4_3 quantization (#1082) 2023-04-20 20:35:53 +03:00
slaren
8944a13296
Add NVIDIA cuBLAS support (#1044) 2023-04-19 11:22:45 +02:00
Georgi Gerganov
77a73403ca
ggml : add new Q4_2 quantization (ARM only) (#1046)
* ggml : Q4_2 ARM

* ggml : add ggml_is_quantized()

* llama : update llama_type_name() with Q4_2 entry

* ggml : speed-up q4_2

- 4 threads: ~100ms -> ~90ms
- 8 threads:  ~55ms -> ~50ms

* ggml : optimize q4_2 using vmlaq_n_f32 + vmulq_n_f32
2023-04-18 23:54:57 +03:00
slaren
315a95a4d3
Add LoRA support (#820) 2023-04-17 17:28:55 +02:00
Ivan Komarov
f266259ad9
Speedup the AVX-512 implementation of ggml_vec_dot_q4_0() (#933) 2023-04-17 15:10:57 +02:00
Georgi Gerganov
e95b6554b4
ggml : add Q8_0 quantization for intermediate results (#951)
* ggml : add Q8_0 quantization for intermediate results

* quantize-stats : fix test + add it to Makefile default

* Q8: use int8_t, AVX/AVX2 optimizations

* ggml : fix quantize_row_q8_0() ARM_NEON rounding

* minor : updates after rebase to latest master

* quantize-stats : delete obsolete strings

* ggml : fix q4_1 dot func

---------

Co-authored-by: Stephan Walter <stephan@walter.name>
2023-04-15 17:53:22 +03:00
Pavol Rusnak
c56b715269
Expose type name from ggml (#970)
Avoid duplication of type names in utils

Co-authored-by: Håkon H. Hitland <haakon@likedan.net>
2023-04-14 20:05:37 +02:00
Kerfuffle
c9a59b70a5
ggml : add unary and binary map operations (#874)
* GGML map ops proof of concept.

* Various cleanups.

Add handling for task setting.

Add handling for ggml_compute_backward.

Rename functions to ggml_map_unary_f32 and ggml_map_binary_f32

Fix compiler warnings related to casting function pointers and `void *`

Reorder functions and definitions based on the GGML op number.

Use typedefs for map op function pointer types.

* Fix position of map ops cases in ggml_compute_forward
2023-04-14 17:43:55 +03:00
Georgi Gerganov
a3a2a0eda8
ggml : add GGML_DEFAULT_N_THREADS 2023-04-13 18:36:48 +03:00
Stephan Walter
3e6e70d8e8
Add enum llama_ftype, sync ggml_type to model files (#709) 2023-04-11 15:03:51 +00:00
Georgi Gerganov
c3ac702e5e
ggml : add ggml_cont() + optimize ggml_cpy() for contiguous dst 2023-04-10 22:42:28 +03:00
comex
f963b63afa Rewrite loading code to try to satisfy everyone:
- Support all three formats (ggml, ggmf, ggjt).  (However, I didn't
  include the hack needed to support GPT4All files without conversion.
  Those can still be used after converting them with convert.py from my
  other PR.)

- Support both mmap and read (mmap is used by default, but can be
  disabled with `--no-mmap`, and is automatically disabled for pre-ggjt
  files or on platforms where mmap is not supported).

- Support multi-file models like before, but automatically determine the
  number of parts rather than requiring `--n_parts`.

- Improve validation and error checking.

- Stop using the per-file type field (f16) entirely in favor of just
  relying on the per-tensor type/size fields.  This has no immediate
  benefit, but makes it easier to experiment with different formats, and
  should make it easier to support the new GPTQ-for-LLaMa models in the
  future (I have some work in progress on that front).

- Support VirtualLock on Windows (using the same `--mlock` option as on
  Unix).

    - Indicate loading progress when using mmap + mlock.  (Which led me
      to the interesting observation that on my Linux machine, with a
      warm file cache, mlock actually takes some time, whereas mmap
      without mlock starts almost instantly...)

      - To help implement this, move mlock support from ggml to the
        loading code.

- madvise/PrefetchVirtualMemory support (based on #740)

- Switch from ifstream to the `fopen` family of functions to avoid
  unnecessary copying and, when mmap is enabled, allow reusing the same
  file descriptor for both metadata reads and mmap (whereas the existing
  implementation opens the file a second time to mmap).

- Quantization now produces a single-file output even with multi-file
  inputs (not really a feature as much as 'it was easier this way').

Implementation notes:

I tried to factor the code into more discrete pieces than before.

Regarding code style: I tried to follow the code style, but I'm naughty
and used a few advanced C++ features repeatedly:

- Destructors to make it easier to ensure everything gets cleaned up.

- Exceptions.  I don't even usually use exceptions when writing C++, and
  I can remove them if desired... but here they make the loading code
  much more succinct while still properly handling a variety of errors,
  ranging from API calls failing to integer overflow and allocation
  failure.  The exceptions are converted to error codes at the
  API boundary.)

Co-authored-by: Pavol Rusnak <pavol@rusnak.io> (for the bit I copied from #740)
2023-04-10 01:10:46 +02:00
unbounded
62cfc54f77
Add quantize-stats command for testing quantization (#728)
Command that calculates some statistics over the errors introduced by
quantization, like mean square error, max error and some percentile errors for layer
weights. Should be useful for testing quantization improvements.

Exposes some internal state from ggml and llama for testing
2023-04-08 00:09:18 +02:00
Georgi Gerganov
986b6ce9f9
ggml, llama : avoid heavy V transpose + improvements (#775)
ggml :

- added ggml_view_3d()
- ggml_view_tensor() now inherits the stride too
- reimplement ggml_cpy() to account for dst stride
- no longer require tensor->data to be memory aligned

llama :

- compute RoPE on 32-bit tensors (should be more accurate)
- store RoPE-ed K in the KV cache
- store transposed V in the KV cache (significant speed-up)
- avoid unnecessary Q copy
2023-04-05 22:07:33 +03:00
Marian Cepok
c0bb1d3ce2
ggml : change ne to int64_t (#626) 2023-04-02 13:21:31 +03:00
Justine Tunney
6f23ba5ee2 Ensure --mlock works properly with mmap() support 2023-03-30 12:28:25 -07:00
Slaren
c03ae8dca1 Add mmap support for model files 2023-03-30 12:28:25 -07:00
Stephan Walter
c1f885067c
ggml : introduce structs for the q4 data blocks (#356)
* Introduce structs for the q4 data blocks

* ggml : rename quant struct variables + fix ARM_NEON

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-03-28 18:56:03 +03:00
comex
563cdc391d
Support calling mlock() on loaded model data on Linux and macOS (#453)
* Support calling mlock() on loaded model data on Linux and macOS

This is enabled by a new --mlock command line option.

Using mlock() disables swapping and memory compression for the model
data.  Doing so can be useful on systems where the model takes up a
large fraction of system RAM.  In my experience, macOS is quite eager to
start compressing llama.cpp's memory, which then makes it halt for a few
seconds while it decompresses, even with a model that uses "only" 25GB
out of 32GB.

Of course, this comes at the cost of forcing the system to swap or
compress other processes' memory instead, so it needs to be used with
care and shouldn't be enabled by default.

In theory it should be possible to support this on Windows as well using
VirtualLock(), but I'm not much of a Windows user.

* Update llama.cpp

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-03-24 17:19:05 +02:00
Stephan Walter
69c92298a9
Deduplicate q4 quantization functions (#383)
* Deduplicate q4 quantization functions

* Use const; add basic test

* Re-enable quantization test

* Disable AVX2 flags in CI

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-03-22 19:29:06 +02:00
Georgi Gerganov
f5a77a629b
Introduce C-style API (#370)
* Major refactoring - introduce C-style API

* Clean up

* Add <cassert>

* Add <iterator>

* Add <algorithm> ....

* Fix timing reporting and accumulation

* Measure eval time only for single-token calls

* Change llama_tokenize return meaning
2023-03-22 07:32:36 +02:00
hoangmit
6eac39ba95
Add RMS norm and use it (#187)
* add ggml_rms_norm

* update op num
2023-03-16 00:41:38 +02:00
Georgi Gerganov
26c0846629
Initial release 2023-03-10 20:56:40 +02:00