Commit Graph

59 Commits

Author SHA1 Message Date
Georgi Gerganov
6cfb31f9ea
metal : add indirect mat-vec kernels for all quantization types 2023-12-10 11:48:14 +02:00
Georgi Gerganov
016f9bb55a
metal : fix ggml_get_rows to work with non-cont src1 2023-12-10 09:38:21 +02:00
Georgi Gerganov
8c5b66eeaa
metal : reduce the kernel launches for ggml_mul_mat_id 2023-12-09 15:30:34 +02:00
Georgi Gerganov
2cbcba829f
metal : add more general support for ggml_get_rows + tests 2023-12-09 14:18:42 +02:00
Georgi Gerganov
fe680e3d10
sync : ggml (new ops, tests, backend, etc.) (#4359)
* sync : ggml (part 1)

* sync : ggml (part 2, CUDA)

* sync : ggml (part 3, Metal)

* ggml : build fixes

ggml-ci

* cuda : restore lost changes

* cuda : restore lost changes (StableLM rope)

* cmake : enable separable compilation for CUDA

ggml-ci

* ggml-cuda : remove device side dequantize

* Revert "cmake : enable separable compilation for CUDA"

This reverts commit 09e35d04b1.

* cuda : remove assert for rope

* tests : add test-backend-ops

* ggml : fix bug in ggml_concat

* ggml : restore `ggml_get_n_tasks()` logic in `ggml_graph_plan()`

* ci : try to fix macOS

* ggml-backend : remove backend self-registration

* ci : disable Metal for macOS cmake build

ggml-ci

* metal : fix "supports family" call

* metal : fix assert

* metal : print resource path

ggml-ci

---------

Co-authored-by: slaren <slarengh@gmail.com>
2023-12-07 22:26:54 +02:00
Georgi Gerganov
bcc0eb4591
llama : per-layer KV cache + quantum K cache (#4309)
* per-layer KV

* remove unnecessary copies

* less code duplication, offload k and v separately

* llama : offload KV cache per-layer

* llama : offload K shift tensors

* llama : offload for rest of the model arches

* llama : enable offload debug temporarily

* llama : keep the KV related layers on the device

* llama : remove mirrors, perform Device -> Host when partial offload

* common : add command-line arg to disable KV cache offloading

* llama : update session save/load

* llama : support quantum K cache (#4312)

* llama : support quantum K cache (wip)

* metal : add F32 -> Q8_0 copy kernel

* cuda : add F32 -> Q8_0 copy kernel

ggml-ci

* cuda : use mmv kernel for quantum cache ops

* llama : pass KV cache type through API

* llama : fix build

ggml-ci

* metal : add F32 -> Q4_0 copy kernel

* metal : add F32 -> Q4_1 copy kernel

* cuda : wip

* cuda : add F32 -> Q4_0 and F32 -> Q4_1 copy kernels

* llama-bench : support type_k/type_v

* metal : use mm kernel only for quantum KV cache

* cuda : add comment

* llama : remove memory_f16 and kv_f16 flags

---------

Co-authored-by: slaren <slarengh@gmail.com>

* readme : add API change notice

---------

Co-authored-by: slaren <slarengh@gmail.com>
2023-12-07 13:03:17 +02:00
Georgi Gerganov
ef47ec18da
ggml : add ggml_soft_max_ext (#4256)
* metal : implement soft_max_ext

* cuda : implement soft_max_ext

* ggml : implement soft_max_ext (CPU)

* batched-bench : print threads

ggml-ci

* metal : simplify soft_max encoding

ggml-ci

* cuda : use 512 threads for soft_max instead of 32

* ggml : update soft max cpu

* cuda : do warp-based block reduce

* cuda : increase max block size to 1024

* cuda : fix warp reduction initialization of shared mem

* metal : warp-based reduction for soft max kernel

* metal : warp-based reduce for rms_norm

* metal : simplify soft max kernel

ggml-ci

* alloc : fix build with debug
2023-12-01 10:51:24 +02:00
Georgi Gerganov
3d68f364f1
ggml : sync (im2col, GPU conv, 32-bit arm compat) (#4060)
ggml-ci
2023-11-13 16:55:52 +02:00
Georgi Gerganov
183b3fac6c
metal : fix build errors and kernel sig after #2268 (#3898) 2023-11-02 08:33:37 +02:00
cebtenzzre
898aeca90a
llama : implement YaRN RoPE scaling (#2268)
Co-authored-by: cebtenzzre <cebtenzzre@gmail.com>
Co-authored-by: Jeffrey Quesnelle <jquesnelle@gmail.com>
2023-11-01 18:04:33 -04:00
Georgi Gerganov
e16b9fa4ba
metal : multi-simd softmax (#3710)
ggml-ci
2023-11-01 21:25:00 +02:00
Georgi Gerganov
469c9addef
metal : handle ggml_scale for n%4 != 0 (close #3754)
ggml-ci
2023-10-24 09:47:22 +03:00
Jhen-Jie Hong
c67fe68e41
metal : implement q5_0 and q5_1 kernels (#3648)
* metal : implement dequantize_q5_0

* metal : block_q_n_dot_y for block_q5_0 (broken)

* metal : revert unnecessary change

* metal : implement dequantize_q5_1

* metal : block_q_n_dot_y for q5_1 (broken)

* metal : fix block_q_n_dot_y

* minor : spaces / formatting

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-10-18 15:21:48 +03:00
Georgi Gerganov
fcca0a7004
refact : fix convert script + zero out KV cache to avoid nans (#3523)
* refact : fix convert script + zero out KV cache to avoid nans

* ggml : silu(-inf) should never happen

* metal : assert various kernel requirements
2023-10-09 14:32:17 +03:00
Georgi Gerganov
b0ec5218c3
metal : support MTLGPUFamily < Apple7, formatting, style (#3524)
* metal : improve decoding speed for batches of 2-16

* metal : rename kernels mul_mat_ to mul_mv_

* metal : indentations

* minor

* metal : print more GPU info + disable mul_mm for MTLGPUFamiliy < Apple7
2023-10-08 10:01:53 +03:00
Phillip Kravtsov
0e797c2fc5
llm : support Adept Persimmon 8B (#3410)
* Produces garbage output

* wip: correct tensors up to RoPE

* correct tensors thru RoPE

* Correct outputs through masked & softmax'd KQ

* fp32 works

* Rename adept->persimmon

* Produces correct outputs

* clean up convert scripts

* remove printing logic from ggml.c

* remove prints from llama.cpp & fix merge

* trivial cleanups

* Add offload funcs

* update conversion script to directly take adept artifacts rather than .saftensors file

* Fix norm eps bug

* Support sqr and concat on metal, persimmon-8b-q4 runs correctly

* Small changes from review

* Formatting changes

* Minor changes to conversion script

* Remove old script

* Fix editorconfig formatting

* Fix build

* add overlooked offload code ggml-ci
2023-10-07 10:12:43 +03:00
Jiahao Li
f56e1baec3
metal : alibi for arbitrary number of heads (#3426) 2023-10-03 19:55:21 +03:00
Georgi Gerganov
ec893798b7
llama : custom attention mask + parallel decoding + no context swaps (#3228)
* tests : verify that RoPE is "additive"

* llama : replace ggml_diag_mask_inf with ggml_add (custom -inf mask)

* ggml : ggml_rope now takes a vector with positions instead of n_past

* metal : add rope_f16 kernel + optimize cpy kernels

* llama : unified KV cache + batch inference API

* llama : add new llama_decode() API that works with llama_batch

* llama : add cell_max heuristic for more efficient kv_cache

* llama : extend llama_kv_cache API

* llama : more robust cell_max heuristic + wip shift

* metal : disable concurrency optimization

* llama : add llama_kv_cache_shift_seq + no more context swaps

* llama : apply K-cache roping for Falcon and Baichuan

* speculative : fix KV cache management

* parallel : example for serving multiple users in parallel

* parallel : disable hot-plug to avoid cache fragmentation

* fixes : speculative KV cache + llama worst-case graph

* llama : extend batch API to select which logits to output

* llama : fix worst case graph build

* ggml-cuda : update rope implementation for parallel decoding (#3254)

* ggml-cuda : update rope implementation for parallel decoding

* better solution for p0 computation

* fix rope

* simpler rope implementation

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* make : add parallel to build + fix static functions in llama.cpp

* simple : fix token counting

* parallel : various improvements

* llama : fix cell_max logic + rename functions

* parallel : try smaller batches when the KV cache is fragmented

* parallel : fix sequence termination criteria

* llama : silence errors KV cache errors

* parallel : remove new line from prompt

* parallel : process system prompt once + configurable paramters + llama API

* parallel : remove question with short answers

* parallel : count cache misses

* parallel : print misses on each request

* parallel : minor

* llama : fix n_kv to never become 0

* parallel : rename hot-plug to continuous-batching

* llama : improve llama_batch API + simplify parallel example

* simple : add parallel decoding support

* simple : improve comments + free batch

* ggml-cuda : add rope f16, restore performance with parallel decoding (#3272)

* ggml-cuda : add rope f16, restore performance

* offload KQ_mask with all models

* fix rope shift

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* llama : disable MPI for now

ggml-ci

* train : make KQ_pos memory buffer permanent via dummy scale op

* ggml : revert change to ggml_cpy, add ggml_cont_Nd instead (#3275)

ggml-ci

* parallel : fix bug (extra BOS) + smaller token_prev array

* parallel : fix cases where the input prompts can overflow the batch

* parallel : add disabled experimental batch chunking in powers of two

* llama : llama.h formatting + comments

* simple : add README.md

* llama : fix kv cache heuristic when context is less than 32

* parallel : fix crash when `-n -1`

* llama : simplify returns if/else branches

* metal : use mm kernels for batch size > 2

* examples : utilize new llama_get_logits_ith()

* examples : add example for batched decoding

* examples : do not eval prompt 2 times (close #3348)

* server : clear the KV cache beyond n_past before llama_decode

* server : avoid context swaps by shifting the KV cache

---------

Co-authored-by: slaren <slarengh@gmail.com>
2023-09-28 19:04:36 +03:00
Georgi Gerganov
c6f1491da0
metal : fix bug in soft_max kernels (out-of-bounds access) (#3194) 2023-09-15 20:17:24 +03:00
Georgi Gerganov
8c00b7a6ff
sync : ggml (Metal F32 support + reduce ggml-alloc size) (#3192)
* sync : ggml (Metal F32 support + reduce ggml-alloc size)

ggml-ci

* llama-bench : fix ggml_cpu_has_metal() duplicate function

ggml-ci
2023-09-15 19:06:03 +03:00
Georgi Gerganov
a51b687657
metal : relax conditions on fast matrix multiplication kernel (#3168)
* metal : relax conditions on fast matrix multiplication kernel

* metal : revert the concurrnecy change because it was wrong

* llama : remove experimental stuff
2023-09-15 11:09:24 +03:00
Kawrakow
f31b6f4e2d
metal : PP speedup (#3084)
* Minor speed gains for all quantization types

* metal: faster kernel_scale via float4

* Various other speedups for "small" kernels

* metal: faster soft_max vial float4

* metal: faster diagonal infinity

Although, to me it looks like one should simply
fuse scale + diagnonal infinity + soft_max on the
KQtensor.

* Another faster f16 x f32 matrix multiply kernel

* Reverting the diag infinity change

It does work for PP, but somehow it fails for TG.
Need to look more into it.

* metal: add back faster diagonal infinity

This time more carefully

* metal : minor (readibility)

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-09-11 10:30:11 +03:00
Kawrakow
ba7ffbb251
metal : Q3_K speedup (#2995)
* Slightly faster Q3_K and Q5_K on metal

* Another Q3_K speedup on metal

Combined with previous commit, we are now +9.6% for TG.
PP is not affected as this happens via the matrix multiplication
templates.

* Slowly progressing on Q3_K on metal

We are now 13% faster than master

* nother small improvement for Q3_K on metal

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-09-08 19:01:04 +03:00
Kawrakow
be8c9c245b
metal : parallel RoPE on Metal (#3024)
* Parallel RoPE on metal

* PR suggestion

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-09-07 16:45:01 +03:00
Kawrakow
be6beeb8d7
metal : correct fix of kernel_norm (#3060)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-09-07 16:42:42 +03:00
Georgi Gerganov
c4f496648c
metal : fix kernel_norm (fixes Falcon on Metal) (#3057)
* metal : fix kernel_norm

ggml-ci

* metal : put warning in kernel_norm to not combine the loops

* metal : restore original F16 mat-vec multiplication

It works after the norm fixes

* common : don't do warm-up with more than n_batch tokens (close #3058)

ggml-ci

* metal : minor
2023-09-07 15:49:09 +03:00
Georgi Gerganov
b7f2aa9e51
metal : restore 363f0bf and fix reduce in F16_F32 kernels (#2986) 2023-09-03 13:23:33 +03:00
Georgi Gerganov
d9151e6f57
metal : revert 6af0bab until we fix it
This restores the generated text to be the same as before #2959
2023-09-03 12:40:56 +03:00
Kawrakow
ca82cf7bac
metal : more optimizations (#2959)
* Very minor speedup via simd-group synchronization in f16 x f32

* Another very minor speedup on metal

* Quite significant PP speedup on metal

* Another attempt

* Minor

* Massive improvement for TG for fp16

* ~4-5% improvement for Q8_0 TG on metal

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-09-03 11:06:22 +03:00
Georgi Gerganov
13268c5331
metal : slight speed-up for add and mul kernels (#2917) 2023-09-01 13:42:41 +03:00
Kawrakow
e8d9158925
metal: somewhat faster f16 x f32 matrix multiply kernel (#2951)
* Somewhat faster f16 x f32 matrix multiply kernel

* Better use 32 thread groups for f16 x f32

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-09-01 11:15:57 +03:00
Georgi Gerganov
d67777c202
metal : add Q8_0 support (#2763)
* metal : add dequantize_q8_0 kernel

* metal : add mul_mat_q8_0_f32 kernel

* metal : add Q8_0 mul_mm kernel
2023-08-24 16:19:57 +03:00
Georgi Gerganov
cf658adc83
llm : add Falcon support (#2717)
* llama : refactor GGUF constants into static maps

* llama : check if model architecture is known

* llama : refactor llama_model_load_internal()

* gguf : add KV constant maps

* llm : read arch-specific KVs

* convert : add dummy scores + types

* falcon : load tensor data (CPU only)

* llama : fix loading progress bar

* llama : add arch member to llama_model

* falcon : CPU inference working

* falcon : support non-40B models

* falcon : minor

* llama : minor updates

ggml-ci

* convert-falcon-hf-to-gguf.py : fix special token mapping

* llama.cpp : llama default UNK token = id 0

* llama.cpp : fix bpe tokenizer

* llama.cpp : fix the fix of bpe tokenizer

* ggml : pass eps to ggml_norm

* metal : implement RoPE (mode = 2) + avoid ggml_repeat

* ggml : ggml_repeat always creates new tensor

* falcon : copy-paste self-attention from LLaMA

* metal : print extra compute pipeline info

* falcon : minor changes (still chasing the Metal problem)

* llama.cpp : fix linefeed token

* metal : fix GELU kernel numerical stability by using precise::tanh

* metal : temporary workaround for the concurrency optimization bug

* falcon : add CUDA offloading (#2739)

* llama : better model naming and size reporting

* llama : prep new tokenizer support

* llama : advanced BPE tokenizer based on ggllm.cpp imlpementation

* llama : remove oboslete comment

ggml-ci

* common : remove obsolete BPE API + disable test-tokenizer-1

* llama : revert BPE special-case in llama_byte_to_token()

* cuda : add TODOs for RoPE NeoX implementation

* llama : default special tokens based on vocab type

* perplexity : add log for start of tokenization

---------

Co-authored-by: klosax <131523366+klosax@users.noreply.github.com>
Co-authored-by: slaren <slarengh@gmail.com>
2023-08-23 23:08:04 +03:00
Shouzheng Liu
14b1d7e6f7
metal : add missing barriers for mul-mat (#2699) 2023-08-22 09:18:40 +03:00
Shouzheng Liu
dadbed99e6
metal : fix synchronization in new matrix multiplication kernel (#2686) 2023-08-21 13:59:29 +03:00
Shouzheng Liu
bf83bff674
metal : matrix-matrix multiplication kernel (#2615)
* metal: matrix-matrix multiplication kernel

This commit removes MPS and uses custom matrix-matrix multiplication
kernels for all quantization types. This commit also adds grouped-query
attention to support llama2 70B.

* metal: fix performance degradation from gqa

Integers are slow on the GPU, and 64-bit divides are extremely slow.
In the context of GQA, we introduce a 64-bit divide that cannot be
optimized out by the compiler, which results in a decrease of ~8% in
inference performance. This commit fixes that issue by calculating a
part of the offset with a 32-bit divide. Naturally, this limits the
size of a single matrix to ~4GB. However, this limitation should
suffice for the near future.

* metal: fix bugs for GQA and perplexity test.

I mixed up ne02 and nb02 in previous commit.
2023-08-16 23:07:04 +03:00
Matteo Boschini
1873ff586b
metal : add gqa8 kernel to allow llama-2-70B on metal (#2459)
* Added gqa8 kernel to allow llama-2-70B on metal

* Update ggml-metal.m

Co-authored-by: Cebtenzzre <cebtenzzre@gmail.com>

* Extend kernel_mul_mat_f16_f32 to handle gqa broadcast

* Added ne03==ne13 assertion

---------

Co-authored-by: Cebtenzzre <cebtenzzre@gmail.com>
2023-08-01 10:43:12 +03:00
Kawrakow
9a08eaf3c4
Another speed gain for Q4_0 and Q4_1 on Metal (#2375)
* Another speed gain for Q4_0 and Q4_1 on Metal

* Have N_DST, etc., be template parameters

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-07-25 13:48:29 +03:00
Jiahao Li
83a00ce69b
metal : support bcast add & dup & cont op (#2323) 2023-07-23 14:00:37 +03:00
Kawrakow
4d76a5f49b
Faster Q3_K implementation on Metal (#2307)
* Faster Q3_K on Metal

* Additional Q3_K speedup on Metal

* Q3_K for QK_K = 64

* Better Q3_K for QK_K = 64

21.6 ms/t -> 21.1 ms/t

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-07-21 17:05:30 +03:00
Kawrakow
e68c96f7fe
Faster Q2_K on Metal (#2297)
* Faster Q2_K on Metal

* Deleting unnoticed and dangereous trailing white space

* Fixed bug in new metal Q2_K implementation

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-07-21 10:44:40 +03:00
Kawrakow
e782c9e735
Faster Q5_K and Q6_K on Metal (#2294)
* Faster Q6_K on Metal

* Faster Q5_K on Metal

* Another Q5_K speedup

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-07-20 18:19:45 +03:00
Kawrakow
785829dfe8
Faster Q4_K on Metal (#2290)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-07-20 15:18:43 +03:00
Shouzheng Liu
417a85a001
metal: minor q4 optimization and reduce code size (#2248)
* metal: use uint16_t instead of uint8_t.

Apple GPU doesn't like uint8_t. For every operation on uint8_t
the gpu need to copy the uint8_t to an empty 16 bit register, then
it can issue other instructions.

For the matrix-vector multiplication kernel only, we observed a
340~350 GB/s memory read speed on M1 Max after this commit, which is
very close to the reported hardware limit.

* metal: update rms_norm kernel

This commit double the speed of rms_norm operations by using 512 threads
per threadgroup, combining with SIMD primitives to minimize the need for
thread group barriers.

* metal: use template to reduce size

Revert modifications on block_q4_0 and block_q4_1.
2023-07-20 13:32:22 +03:00
Xiao-Yong Jin
6e7cca4047
llama : add custom RoPE (#2054)
* Implement customizable RoPE

The original RoPE has pre-defined parameters

theta_i = 10000^(−2(i−1)/d), for i in [1, 2, ..., d/2]

Our customizable RoPE, ggml_rope_custom_inplace, uses

theta_i = scale * base^(−2(i−1)/d), for i in [1, 2, ..., d/2]

with the default matches the original

scale = 1.0
base = 10000

The new command line arguments
--rope-freq-base
--rope-freq-scale
set the two new RoPE parameter.

Recent researches show changing these two parameters extends the context limit with minimal loss.

1. Extending Context to 8K
   kaiokendev
   https://kaiokendev.github.io/til#extending-context-to-8k

2. Extending Context Window of Large Language Models via Positional Interpolation
   Shouyuan Chen, Sherman Wong, Liangjian Chen, Yuandong Tian
   https://arxiv.org/abs/2306.15595

3. NTK-Aware Scaled RoPE allows LLaMA models to have extended (8k+) context size without any fine-tuning and minimal perplexity degradation.
   https://www.reddit.com/user/bloc97
   https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/

For the bold, try adding the following command line parameters to your favorite model:
-c 16384 --rope-freq-base 80000 --rope-freq-scale 0.5

* ggml-metal: fix custom rope

* common: fix argument names in help

* llama: increase MEM_REQ_EVAL for MODEL_3B

It avoids crashing for quantized weights on CPU.
Better ways to calculate the required buffer size would be better.

* llama: make MEM_REQ_EVAL depend on n_ctx

* server: use proper Content-Type in curl examples

Without the header Content-Type: application/json, curl will POST with
Content-Type: application/x-www-form-urlencoded

Though our simple server doesn't care, the httplib.h used has a limit
with CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 8192

With Content-Type: application/json, we can send large json data.

* style : minor fixes, mostly indentations

* ggml : fix asserts

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-07-15 13:34:16 +03:00
Kawrakow
27ad57a69b
Metal: faster Q4_0 and Q4_1 matrix x vector kernels (#2212)
* 3-5% faster Q4_0 on Metal

* 7-25% faster Q4_1 on Metal

* Oops, forgot to delete the original Q4_1 kernel

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-07-14 11:46:21 +02:00
Shouzheng Liu
1cbf561466
metal : new q4_0 matrix-vector kernel (#2188)
Prefetch data to improve GPU utilization. ~48% faster for 33B model.
2023-07-12 23:10:55 +03:00
Kawrakow
6769e944c7
k-quants : support for super-block size of 64 (#2001)
* k_quants: WIP super-blocks with 64 weights

* k_quants: WIP super-blocks with 64 weights

Q6_K scalar and AVX2 works

* k_quants: WIP super-blocks with 64 weights

Q4_K scalar and AVX2 works

* k_quants: WIP super-blocks with 64 weights

Q2_K scalar and AVX2 works. Q2_K is way too slow (it is actually slower
than the scalar implementation)

* k_quants: WIP super-blocks with 64 weights

Q3_K scalar and AVX2 works.

* k_quants: WIP super-blocks with 64 weights

Q5_K scalar and AVX2 works, and with that all
k_quants are done on AVX2 and scalar

* k_quants: WIP super-blocks with 64 weights

Q6_K working on CUDA. Cannot make it run quite as gast as
with super-blocks with 256 weigths: 8% slower on 4080,
20% slower on the 1660 (but there we fit 1 less layer on the
GPU because pf the larger model size), so some fraction of
these 20% is due to that,

* k_quants: WIP super-blocks with 64 weights

Q4_K working on CUDA. ~10% slower on GTX-1660,
16% slower on 4080.

* k_quants: WIP super-blocks with 64 weights

Q2_K working on CUDA. ~3% slower on GTX-1660,
10% slower on 4080.

* k_quants: WIP super-blocks with 64 weights

Q3_K working on CUDA.

* k_quants: WIP super-blocks with 64 weights

Q5_K working on CUDA, and with this CUDA is done.

* k_quants: WIP super-blocks with 64 weights

Q6_K working on ARM_NEON

* k_quants: WIP super-blocks with 64 weights

Q4_K working on ARM_NEON, but quite a bit slower than 256 weights

* k_quants: WIP super-blocks with 64 weights

Q2_K working on ARM_NEON, but quite a bit slower than 256 weights

* k_quants: WIP super-blocks with 64 weights

Q3_K working on ARM_NEON, but quite a bit slower than 256 weights.

* k_quants: WIP super-blocks with 64 weights

Q5_K working on ARM_NEON, but quite a bit slower than 256 weights.

With that, we have full support for ARM_NEON, although
performance is not quite there.

* k_quants: WIP super-blocks with 64 weights

Slightly more efficient Q3_K and Q5_K

* k_quants: WIP super-blocks with 64 weights

Another small improvement for Q3_K and Q5_K on ARM_NEON

* k_quants: WIP super-blocks with 64 weights

Yet another speedup for Q5_K on ARM_NEON.
We are now within 10% of the QK_K = 256 version.

* k_quants: WIP super-blocks with 64 weights

* We are able to pass preprocessor macros to the Metal
  compiler
* Q6_K works and is actually slightly more efficient than
  the QK_K = 256 version (25.2 ms vs 25.8 ms)

* k_quants: WIP super-blocks with 64 weights

Q4_K works on Metal and is actually slightly faster
than QK_K = 256 (21.95 ms vs 24.0 ms).

* k_quants: WIP super-blocks with 64 weights

Q2_K works on Metal and is very slightly faster
than QK_K = 256 (23.8 ms vs 24.2 ms).

* k_quants: WIP super-blocks with 64 weights

Q3_K works on Metal and is slightly faster
than QK_K = 256 (26.6 ms vs 28.3 ms).

* k_quants: WIP super-blocks with 64 weights

Q5_K works on Metal and is slightly faster
than QK_K = 256 (23.7 ms vs 26.3 ms).

* k_quants: call them _K, not _k, also on Metal

* k_quants: correctly define QK_K in llama.cpp

* Fixed bug in q4_K quantization added with the 64-block addition

* Simplify via lambda

* k_quants: swicth Q3_K to 4-bit scales when QK_K = 64

Otherwise there isn't much benefit from this
quantization type. There is some very slight loss
in accuracy, but we reduce size by ~7%.
E.g., for OpenLLaMA-3B, Q3_K_S perplexity is
8.6131 with 8-bit scales and 8.6352 with 4-bit,
while file size decreases from 1.53G to 1.44G.

* k_quants: switch Q4_K to 4-bit scales when QK_K = 64

 Here the loss in accuracy is greater than for Q3_K,
 but the Q4_K points still move further to the left on
 the perplexity vs size curve.

* k_quants: forgot to add the Metal changes in last commit

* k_quants: change Q5_K to be type 0 when QK_K = 64

Still needs AVX2 implementation

* k_quants: AVX2 implementation for new 64-weight Q5_K

* k_quants: 10% faster ARM_NEON Q5_K dot product

* k_quants: fixed issue caused by merging with master

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-26 19:43:07 +03:00
Aaron Miller
0711a5f6dc
metal : add norm, cpy f16->f16, alibi kernels (#1823) 2023-06-17 17:37:49 +03:00
Kawrakow
74a6d922f1
Metal implementation for all k_quants (#1807)
* metal : improve q4_K

28.3 -> 26.0 ms/token by avoiding a branch in the
calculation of the scales.

* metal : small improvement for Q4_K

* metal : still optimizing Q4_K

This commit pushes it down to 25.3 ms / token.

The crazy idea of using 6 bits for the scales is really costly on
Metal: if I remove the bit fiddling necessary to make the block
scales, time goes almost to the Q4_0 23 ms/token.

Before pushing the k-quants upstream I had a Q4_K variant that
had used 8-bit scales. It wasn't more accurate, used 0.125 bits more per weight,
was running slightly slower on the CPU (due to the larger model size
and being memory bound there), and the difference was entirely
negligible under CUDA. So, I decided to publish the version with 6-bit
scales. Perhaps I should re-consider and change to 8-bit scales?

* metal : some more optimizations

Q2_K: 25.4 ms/token
Q6_K: 27.3 ms/token
Q4_0: 22.8 ms/token
Q4_1: 23.1 ms/token

* metal : Q3_K support

Something is not quite right yet.

* metal : Q5_K support

Initial version achieves 31.2 ms/token, 210 GB/s

* metal : still not able to figure out why q3_K does not work

* Minor

* metal : yet another failed attempt to make q3_K work

* metal : optimize Q5_K

31.2 ms -> 27.8 ms.
250 GB/s.

* metal : q3_K still not working

Adding a heavily commented q3_K metal kernel to explain
my obviously faulty logic. Perhaps someone could spot the issue?

* metal : q3_K finally working

Not optimized at all.

What was the issue? The scales are not 4-bytes aligned,
and I was accessing them with a uint32_t pointer.
When I tried that on CUDA, I got an error (illegal memory access)
and added a memcpy to a local array of 3 uint32_t's.
But on Metal it told me there is no memcpy, so I tried
accessing directly. There is no error, just garbage results.
At some point I did try accessing the scales with an uint16_t
pointer (the scales are for sure 2-byte aligned), but was
still getting garbage. I guess, there must have been another bug.

No access to scales is via a uint16_t pointer and, after starting
from scratch from the C dequantize function, it finally works.

* metal : Q3_K 1st optimization pass

* metal : Q3_K second optimization pass - 29.6 ms/token

* metal : Q3_K cleanup

* metal : fixed accidentally broken Q2_K

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-12 22:39:21 +03:00