2024-03-12 13:27:20 +01:00
|
|
|
#define GGML_COMMON_DECL_METAL
|
|
|
|
#define GGML_COMMON_IMPL_METAL
|
|
|
|
#include "ggml-common.h"
|
|
|
|
|
2023-06-04 22:34:30 +02:00
|
|
|
#include <metal_stdlib>
|
|
|
|
|
|
|
|
using namespace metal;
|
|
|
|
|
|
|
|
#define MAX(x, y) ((x) > (y) ? (x) : (y))
|
2023-12-07 12:03:17 +01:00
|
|
|
#define MIN(x, y) ((x) < (y) ? (x) : (y))
|
2023-12-07 21:26:54 +01:00
|
|
|
#define SWAP(x, y) { auto tmp = (x); (x) = (y); (y) = tmp; }
|
2023-06-04 22:34:30 +02:00
|
|
|
|
2023-12-01 09:51:24 +01:00
|
|
|
#define N_SIMDWIDTH 32 // assuming SIMD group size is 32
|
|
|
|
|
2024-11-06 18:53:51 +01:00
|
|
|
// ref: https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf
|
|
|
|
//
|
|
|
|
// cmd:
|
|
|
|
// .../usr/bin/metal -dM -E -c ggml/src/ggml-metal.metal
|
|
|
|
// .../usr/bin/metal -dM -E -c -target air64-apple-ios14.0 ggml/src/ggml-metal.metal
|
|
|
|
//
|
2024-11-08 20:59:46 +01:00
|
|
|
#if __METAL_VERSION__ < 310 && defined(GGML_METAL_USE_BF16)
|
|
|
|
#undef GGML_METAL_USE_BF16
|
2024-11-06 18:53:51 +01:00
|
|
|
#endif
|
|
|
|
|
2024-11-08 20:59:46 +01:00
|
|
|
#if defined(GGML_METAL_USE_BF16)
|
2024-11-06 18:53:51 +01:00
|
|
|
typedef matrix<bfloat, 4, 4> bfloat4x4;
|
|
|
|
#endif
|
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
constexpr constant static float kvalues_iq4nl_f[16] = {
|
|
|
|
-127.f, -104.f, -83.f, -65.f, -49.f, -35.f, -22.f, -10.f, 1.f, 13.f, 25.f, 38.f, 53.f, 69.f, 89.f, 113.f
|
2023-12-07 21:26:54 +01:00
|
|
|
};
|
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
// NOTE: this is not dequantizing - we are simply fitting the template
|
|
|
|
template <typename type4x4>
|
|
|
|
void dequantize_f32(device const float4x4 * src, short il, thread type4x4 & reg) {
|
2024-11-04 12:49:34 +01:00
|
|
|
reg = (type4x4)(*src);
|
2024-11-04 12:43:32 +01:00
|
|
|
}
|
2023-09-28 18:04:36 +02:00
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
template <typename type4x4>
|
|
|
|
void dequantize_f16(device const half4x4 * src, short il, thread type4x4 & reg) {
|
2024-11-04 12:49:34 +01:00
|
|
|
reg = (type4x4)(*src);
|
2023-12-07 21:26:54 +01:00
|
|
|
}
|
|
|
|
|
2024-11-08 20:59:46 +01:00
|
|
|
#if defined(GGML_METAL_USE_BF16)
|
2024-11-06 18:53:51 +01:00
|
|
|
template <typename type4x4>
|
|
|
|
void dequantize_bf16(device const bfloat4x4 * src, short il, thread type4x4 & reg) {
|
|
|
|
reg = (type4x4)(*src);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
template <typename type4x4>
|
|
|
|
void dequantize_q4_0(device const block_q4_0 *xb, short il, thread type4x4 & reg) {
|
|
|
|
device const uint16_t * qs = ((device const uint16_t *)xb + 1);
|
|
|
|
const float d1 = il ? (xb->d / 16.h) : xb->d;
|
|
|
|
const float d2 = d1 / 256.f;
|
|
|
|
const float md = -8.h * xb->d;
|
|
|
|
const ushort mask0 = il ? 0x00F0 : 0x000F;
|
|
|
|
const ushort mask1 = mask0 << 8;
|
2024-08-27 21:01:45 +02:00
|
|
|
|
2024-11-08 12:47:22 +01:00
|
|
|
float4x4 reg_f;
|
|
|
|
|
|
|
|
for (int i = 0; i < 8; i++) {
|
|
|
|
reg_f[i/2][2*(i%2) + 0] = d1 * (qs[i] & mask0) + md;
|
|
|
|
reg_f[i/2][2*(i%2) + 1] = d2 * (qs[i] & mask1) + md;
|
2024-11-04 12:43:32 +01:00
|
|
|
}
|
2024-11-08 12:47:22 +01:00
|
|
|
|
|
|
|
reg = (type4x4) reg_f;
|
2024-11-04 12:43:32 +01:00
|
|
|
}
|
2024-08-27 21:01:45 +02:00
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
template <typename type4x4>
|
|
|
|
void dequantize_q4_1(device const block_q4_1 *xb, short il, thread type4x4 & reg) {
|
|
|
|
device const uint16_t * qs = ((device const uint16_t *)xb + 2);
|
|
|
|
const float d1 = il ? (xb->d / 16.h) : xb->d;
|
|
|
|
const float d2 = d1 / 256.f;
|
|
|
|
const float m = xb->m;
|
|
|
|
const ushort mask0 = il ? 0x00F0 : 0x000F;
|
|
|
|
const ushort mask1 = mask0 << 8;
|
2024-08-27 21:01:45 +02:00
|
|
|
|
2024-11-08 12:47:22 +01:00
|
|
|
float4x4 reg_f;
|
|
|
|
|
|
|
|
for (int i = 0; i < 8; i++) {
|
|
|
|
reg_f[i/2][2*(i%2) + 0] = ((qs[i] & mask0) * d1) + m;
|
|
|
|
reg_f[i/2][2*(i%2) + 1] = ((qs[i] & mask1) * d2) + m;
|
2024-08-27 21:01:45 +02:00
|
|
|
}
|
2024-11-08 12:47:22 +01:00
|
|
|
|
|
|
|
reg = (type4x4) reg_f;
|
2024-08-27 21:01:45 +02:00
|
|
|
}
|
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
template <typename type4x4>
|
|
|
|
void dequantize_q5_0(device const block_q5_0 *xb, short il, thread type4x4 & reg) {
|
|
|
|
device const uint16_t * qs = ((device const uint16_t *)xb + 3);
|
|
|
|
const float d = xb->d;
|
|
|
|
const float md = -16.h * xb->d;
|
|
|
|
const ushort mask = il ? 0x00F0 : 0x000F;
|
2023-09-28 18:04:36 +02:00
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
const uint32_t qh = *((device const uint32_t *)xb->qh);
|
2023-12-07 21:26:54 +01:00
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
const int x_mv = il ? 4 : 0;
|
2023-12-07 21:26:54 +01:00
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
const int gh_mv = il ? 12 : 0;
|
|
|
|
const int gh_bk = il ? 0 : 4;
|
|
|
|
|
2024-11-08 12:47:22 +01:00
|
|
|
float4x4 reg_f;
|
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
for (int i = 0; i < 8; i++) {
|
|
|
|
// extract the 5-th bits for x0 and x1
|
|
|
|
const uint8_t xh_0 = ((qh >> (gh_mv + 2*i )) << gh_bk) & 0x10;
|
|
|
|
const uint8_t xh_1 = ((qh >> (gh_mv + 2*i+1)) << gh_bk) & 0x10;
|
|
|
|
|
|
|
|
// combine the 4-bits from qs with the 5th bit
|
|
|
|
const int32_t x0 = ((((qs[i] ) & mask) >> x_mv) | xh_0);
|
|
|
|
const int32_t x1 = ((((qs[i] >> 8) & mask) >> x_mv) | xh_1);
|
|
|
|
|
2024-11-08 12:47:22 +01:00
|
|
|
reg_f[i/2][2*(i%2) + 0] = d * x0 + md;
|
|
|
|
reg_f[i/2][2*(i%2) + 1] = d * x1 + md;
|
2023-12-07 21:26:54 +01:00
|
|
|
}
|
2024-11-08 12:47:22 +01:00
|
|
|
|
|
|
|
reg = (type4x4) reg_f;
|
2023-12-07 21:26:54 +01:00
|
|
|
}
|
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
template <typename type4x4>
|
|
|
|
void dequantize_q5_1(device const block_q5_1 *xb, short il, thread type4x4 & reg) {
|
|
|
|
device const uint16_t * qs = ((device const uint16_t *)xb + 4);
|
|
|
|
const float d = xb->d;
|
|
|
|
const float m = xb->m;
|
|
|
|
const ushort mask = il ? 0x00F0 : 0x000F;
|
2023-12-07 21:26:54 +01:00
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
const uint32_t qh = *((device const uint32_t *)xb->qh);
|
2023-12-07 21:26:54 +01:00
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
const int x_mv = il ? 4 : 0;
|
2023-12-07 21:26:54 +01:00
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
const int gh_mv = il ? 12 : 0;
|
|
|
|
const int gh_bk = il ? 0 : 4;
|
2023-06-04 22:34:30 +02:00
|
|
|
|
2024-11-08 12:47:22 +01:00
|
|
|
float4x4 reg_f;
|
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
for (int i = 0; i < 8; i++) {
|
|
|
|
// extract the 5-th bits for x0 and x1
|
|
|
|
const uint8_t xh_0 = ((qh >> (gh_mv + 2*i )) << gh_bk) & 0x10;
|
|
|
|
const uint8_t xh_1 = ((qh >> (gh_mv + 2*i+1)) << gh_bk) & 0x10;
|
2024-05-27 11:10:19 +02:00
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
// combine the 4-bits from qs with the 5th bit
|
|
|
|
const int32_t x0 = ((((qs[i] ) & mask) >> x_mv) | xh_0);
|
|
|
|
const int32_t x1 = ((((qs[i] >> 8) & mask) >> x_mv) | xh_1);
|
2024-05-27 11:10:19 +02:00
|
|
|
|
2024-11-08 12:47:22 +01:00
|
|
|
reg_f[i/2][2*(i%2) + 0] = d * x0 + m;
|
|
|
|
reg_f[i/2][2*(i%2) + 1] = d * x1 + m;
|
2024-05-27 11:10:19 +02:00
|
|
|
}
|
2024-11-08 12:47:22 +01:00
|
|
|
|
|
|
|
reg = (type4x4) reg_f;
|
2024-05-27 11:10:19 +02:00
|
|
|
}
|
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
template <typename type4x4>
|
|
|
|
void dequantize_q8_0(device const block_q8_0 *xb, short il, thread type4x4 & reg) {
|
|
|
|
device const int8_t * qs = ((device const int8_t *)xb->qs);
|
|
|
|
const half d = xb->d;
|
2023-07-23 13:00:37 +02:00
|
|
|
|
2024-11-08 12:47:22 +01:00
|
|
|
float4x4 reg_f;
|
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
for (int i = 0; i < 16; i++) {
|
2024-11-08 12:47:22 +01:00
|
|
|
reg_f[i/4][i%4] = (qs[i + 16*il] * d);
|
2024-11-04 12:43:32 +01:00
|
|
|
}
|
2024-11-08 12:47:22 +01:00
|
|
|
|
|
|
|
reg = (type4x4) reg_f;
|
2024-08-27 21:01:45 +02:00
|
|
|
}
|
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
template <typename type4x4>
|
|
|
|
void dequantize_q2_K(device const block_q2_K *xb, short il, thread type4x4 & reg) {
|
|
|
|
const float d = xb->d;
|
|
|
|
const float min = xb->dmin;
|
|
|
|
device const uint8_t * q = (device const uint8_t *)xb->qs;
|
|
|
|
float dl, ml;
|
|
|
|
uint8_t sc = xb->scales[il];
|
2023-06-04 22:34:30 +02:00
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
q = q + 32*(il/8) + 16*(il&1);
|
|
|
|
il = (il/2)%4;
|
2023-06-04 22:34:30 +02:00
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
half coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h);
|
|
|
|
uchar mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
|
|
|
|
dl = d * (sc & 0xF) * coef, ml = min * (sc >> 4);
|
|
|
|
for (int i = 0; i < 16; ++i) {
|
|
|
|
reg[i/4][i%4] = dl * (q[i] & mask) - ml;
|
|
|
|
}
|
2023-10-24 08:46:50 +02:00
|
|
|
}
|
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
template <typename type4x4>
|
|
|
|
void dequantize_q3_K(device const block_q3_K *xb, short il, thread type4x4 & reg) {
|
|
|
|
const half d_all = xb->d;
|
|
|
|
device const uint8_t * q = (device const uint8_t *)xb->qs;
|
|
|
|
device const uint8_t * h = (device const uint8_t *)xb->hmask;
|
|
|
|
device const int8_t * scales = (device const int8_t *)xb->scales;
|
2023-06-04 22:34:30 +02:00
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
q = q + 32 * (il/8) + 16 * (il&1);
|
|
|
|
h = h + 16 * (il&1);
|
|
|
|
uint8_t m = 1 << (il/2);
|
|
|
|
uint16_t kmask1 = (il/4)>1 ? ((il/4)>2 ? 192 : 48) : \
|
|
|
|
((il/4)>0 ? 12 : 3);
|
|
|
|
uint16_t kmask2 = il/8 ? 0xF0 : 0x0F;
|
|
|
|
uint16_t scale_2 = scales[il%8], scale_1 = scales[8 + il%4];
|
|
|
|
int16_t dl_int = (il/4)&1 ? (scale_2&kmask2) | ((scale_1&kmask1) << 2)
|
|
|
|
: (scale_2&kmask2) | ((scale_1&kmask1) << 4);
|
|
|
|
float dl = il<8 ? d_all * (dl_int - 32.f) : d_all * (dl_int / 16.f - 32.f);
|
|
|
|
const float ml = 4.f * dl;
|
2024-04-14 13:14:19 +02:00
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
il = (il/2) & 3;
|
|
|
|
const half coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h);
|
|
|
|
const uint8_t mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
|
|
|
|
dl *= coef;
|
2023-06-04 22:34:30 +02:00
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
for (int i = 0; i < 16; ++i) {
|
|
|
|
reg[i/4][i%4] = dl * (q[i] & mask) - (h[i] & m ? 0 : ml);
|
|
|
|
}
|
2024-05-01 23:44:26 +02:00
|
|
|
}
|
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
static inline uchar2 get_scale_min_k4_just2(int j, int k, device const uchar * q) {
|
|
|
|
return j < 4 ? uchar2{uchar(q[j+0+k] & 63), uchar(q[j+4+k] & 63)}
|
|
|
|
: uchar2{uchar((q[j+4+k] & 0xF) | ((q[j-4+k] & 0xc0) >> 2)), uchar((q[j+4+k] >> 4) | ((q[j-0+k] & 0xc0) >> 2))};
|
2023-12-13 20:54:54 +01:00
|
|
|
}
|
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
template <typename type4x4>
|
|
|
|
void dequantize_q4_K(device const block_q4_K *xb, short il, thread type4x4 & reg) {
|
|
|
|
device const uchar * q = xb->qs;
|
2023-12-13 20:54:54 +01:00
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
short is = (il/4) * 2;
|
|
|
|
q = q + (il/4) * 32 + 16 * (il&1);
|
|
|
|
il = il & 3;
|
|
|
|
const uchar2 sc = get_scale_min_k4_just2(is, il/2, xb->scales);
|
|
|
|
const float d = il < 2 ? xb->d : xb->d / 16.h;
|
|
|
|
const float min = xb->dmin;
|
|
|
|
const float dl = d * sc[0];
|
|
|
|
const float ml = min * sc[1];
|
2024-04-16 17:40:48 +02:00
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
const ushort mask = il<2 ? 0x0F : 0xF0;
|
|
|
|
for (int i = 0; i < 16; ++i) {
|
|
|
|
reg[i/4][i%4] = dl * (q[i] & mask) - ml;
|
|
|
|
}
|
2024-04-16 17:40:48 +02:00
|
|
|
}
|
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
template <typename type4x4>
|
|
|
|
void dequantize_q5_K(device const block_q5_K *xb, short il, thread type4x4 & reg) {
|
|
|
|
device const uint8_t * q = xb->qs;
|
|
|
|
device const uint8_t * qh = xb->qh;
|
2023-12-13 20:54:54 +01:00
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
short is = (il/4) * 2;
|
|
|
|
q = q + 32 * (il/4) + 16 * (il&1);
|
|
|
|
qh = qh + 16 * (il&1);
|
|
|
|
uint8_t ul = 1 << (il/2);
|
|
|
|
il = il & 3;
|
|
|
|
const uchar2 sc = get_scale_min_k4_just2(is, il/2, xb->scales);
|
|
|
|
const float d = il < 2 ? xb->d : xb->d / 16.f;
|
|
|
|
const float min = xb->dmin;
|
|
|
|
const float dl = d * sc[0];
|
|
|
|
const float ml = min * sc[1];
|
2024-04-16 17:40:48 +02:00
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
const ushort mask = il<2 ? 0x0F : 0xF0;
|
|
|
|
const float qh_val = il<2 ? 16.f : 256.f;
|
|
|
|
for (int i = 0; i < 16; ++i) {
|
|
|
|
reg[i/4][i%4] = dl * ((q[i] & mask) + (qh[i] & ul ? qh_val : 0)) - ml;
|
|
|
|
}
|
2024-04-16 17:40:48 +02:00
|
|
|
}
|
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
template <typename type4x4>
|
|
|
|
void dequantize_q6_K(device const block_q6_K *xb, short il, thread type4x4 & reg) {
|
|
|
|
const half d_all = xb->d;
|
|
|
|
device const uint8_t * ql = (device const uint8_t *)xb->ql;
|
|
|
|
device const uint8_t * qh = (device const uint8_t *)xb->qh;
|
|
|
|
device const int8_t * scales = (device const int8_t *)xb->scales;
|
2023-12-13 20:54:54 +01:00
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
ql = ql + 64*(il/8) + 32*((il/2)&1) + 16*(il&1);
|
|
|
|
qh = qh + 32*(il/8) + 16*(il&1);
|
|
|
|
float sc = scales[(il%2) + 2 * ((il/2))];
|
|
|
|
il = (il/2) & 3;
|
2024-04-16 17:40:48 +02:00
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
const uint16_t kmask1 = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
|
|
|
|
const uint16_t kmask2 = il>1 ? 0xF0 : 0x0F;
|
|
|
|
const float coef = il>1 ? 1.f/16.f : 1.f;
|
|
|
|
const float ml = d_all * sc * 32.f;
|
|
|
|
const float dl = d_all * sc * coef;
|
|
|
|
for (int i = 0; i < 16; ++i) {
|
|
|
|
const half q = il&1 ? ((ql[i] & kmask2) | ((qh[i] & kmask1) << 2))
|
|
|
|
: ((ql[i] & kmask2) | ((qh[i] & kmask1) << 4));
|
|
|
|
reg[i/4][i%4] = dl * q - ml;
|
|
|
|
}
|
2023-06-04 22:34:30 +02:00
|
|
|
}
|
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
template <typename type4x4>
|
|
|
|
void dequantize_iq2_xxs(device const block_iq2_xxs * xb, short il, thread type4x4 & reg) {
|
|
|
|
// il is 0...15 for QK_K = 256 => index of block of 32 is il/2
|
|
|
|
const float d = xb->d;
|
|
|
|
const int ib32 = il/2;
|
|
|
|
il = il%2;
|
|
|
|
// il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16
|
|
|
|
// each block of 32 needs 2 uint32_t's for the quants & scale, so 4 uint16_t's.
|
|
|
|
device const uint16_t * q2 = xb->qs + 4*ib32;
|
|
|
|
const uint32_t aux32_g = q2[0] | (q2[1] << 16);
|
|
|
|
const uint32_t aux32_s = q2[2] | (q2[3] << 16);
|
|
|
|
thread const uint8_t * aux8 = (thread const uint8_t *)&aux32_g;
|
|
|
|
const float dl = d * (0.5f + (aux32_s >> 28)) * 0.25f;
|
|
|
|
constant uint8_t * grid = (constant uint8_t *)(iq2xxs_grid + aux8[2*il+0]);
|
|
|
|
uint8_t signs = ksigns_iq2xs[(aux32_s >> 14*il) & 127];
|
|
|
|
for (int i = 0; i < 8; ++i) {
|
|
|
|
reg[i/4][i%4] = dl * grid[i] * (signs & kmask_iq2xs[i] ? -1.f : 1.f);
|
|
|
|
}
|
|
|
|
grid = (constant uint8_t *)(iq2xxs_grid + aux8[2*il+1]);
|
|
|
|
signs = ksigns_iq2xs[(aux32_s >> (14*il+7)) & 127];
|
|
|
|
for (int i = 0; i < 8; ++i) {
|
|
|
|
reg[2+i/4][i%4] = dl * grid[i] * (signs & kmask_iq2xs[i] ? -1.f : 1.f);
|
|
|
|
}
|
2023-10-07 09:12:43 +02:00
|
|
|
}
|
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
template <typename type4x4>
|
|
|
|
void dequantize_iq2_xs(device const block_iq2_xs * xb, short il, thread type4x4 & reg) {
|
|
|
|
// il is 0...15 for QK_K = 256 => index of block of 32 is il/2
|
|
|
|
const float d = xb->d;
|
|
|
|
const int ib32 = il/2;
|
|
|
|
il = il%2;
|
|
|
|
// il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16
|
|
|
|
device const uint16_t * q2 = xb->qs + 4*ib32;
|
|
|
|
const float dl = d * (0.5f + ((xb->scales[ib32] >> 4*il) & 0xf)) * 0.25f;
|
|
|
|
constant uint8_t * grid = (constant uint8_t *)(iq2xs_grid + (q2[2*il+0] & 511));
|
|
|
|
uint8_t signs = ksigns_iq2xs[q2[2*il+0] >> 9];
|
|
|
|
for (int i = 0; i < 8; ++i) {
|
|
|
|
reg[i/4][i%4] = dl * grid[i] * (signs & kmask_iq2xs[i] ? -1.f : 1.f);
|
|
|
|
}
|
|
|
|
grid = (constant uint8_t *)(iq2xs_grid + (q2[2*il+1] & 511));
|
|
|
|
signs = ksigns_iq2xs[q2[2*il+1] >> 9];
|
|
|
|
for (int i = 0; i < 8; ++i) {
|
|
|
|
reg[2+i/4][i%4] = dl * grid[i] * (signs & kmask_iq2xs[i] ? -1.f : 1.f);
|
|
|
|
}
|
2024-08-27 21:01:45 +02:00
|
|
|
}
|
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
template <typename type4x4>
|
|
|
|
void dequantize_iq3_xxs(device const block_iq3_xxs * xb, short il, thread type4x4 & reg) {
|
|
|
|
// il is 0...15 for QK_K = 256 => index of block of 32 is il/2
|
|
|
|
const float d = xb->d;
|
|
|
|
const int ib32 = il/2;
|
|
|
|
il = il%2;
|
|
|
|
// il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16
|
|
|
|
device const uint8_t * q3 = xb->qs + 8*ib32;
|
|
|
|
device const uint16_t * gas = (device const uint16_t *)(xb->qs + QK_K/4) + 2*ib32;
|
|
|
|
const uint32_t aux32 = gas[0] | (gas[1] << 16);
|
|
|
|
const float dl = d * (0.5f + (aux32 >> 28)) * 0.5f;
|
|
|
|
constant uint8_t * grid1 = (constant uint8_t *)(iq3xxs_grid + q3[4*il+0]);
|
|
|
|
constant uint8_t * grid2 = (constant uint8_t *)(iq3xxs_grid + q3[4*il+1]);
|
|
|
|
uint8_t signs = ksigns_iq2xs[(aux32 >> 14*il) & 127];
|
|
|
|
for (int i = 0; i < 4; ++i) {
|
|
|
|
reg[0][i] = dl * grid1[i] * (signs & kmask_iq2xs[i+0] ? -1.f : 1.f);
|
|
|
|
reg[1][i] = dl * grid2[i] * (signs & kmask_iq2xs[i+4] ? -1.f : 1.f);
|
|
|
|
}
|
|
|
|
grid1 = (constant uint8_t *)(iq3xxs_grid + q3[4*il+2]);
|
|
|
|
grid2 = (constant uint8_t *)(iq3xxs_grid + q3[4*il+3]);
|
|
|
|
signs = ksigns_iq2xs[(aux32 >> (14*il+7)) & 127];
|
|
|
|
for (int i = 0; i < 4; ++i) {
|
|
|
|
reg[2][i] = dl * grid1[i] * (signs & kmask_iq2xs[i+0] ? -1.f : 1.f);
|
|
|
|
reg[3][i] = dl * grid2[i] * (signs & kmask_iq2xs[i+4] ? -1.f : 1.f);
|
|
|
|
}
|
2024-08-27 21:01:45 +02:00
|
|
|
}
|
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
template <typename type4x4>
|
|
|
|
void dequantize_iq3_s(device const block_iq3_s * xb, short il, thread type4x4 & reg) {
|
|
|
|
// il is 0...15 for QK_K = 256 => index of block of 32 is il/2
|
|
|
|
const float d = xb->d;
|
|
|
|
const int ib32 = il/2;
|
|
|
|
il = il%2;
|
|
|
|
// il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16
|
|
|
|
device const uint8_t * qs = xb->qs + 8*ib32;
|
|
|
|
device const uint8_t * signs = xb->signs + 4*ib32 + 2*il;
|
|
|
|
const uint8_t qh = xb->qh[ib32] >> 4*il;
|
|
|
|
const float dl = d * (1 + 2*((xb->scales[ib32/2] >> 4*(ib32%2)) & 0xf));
|
|
|
|
constant uint8_t * grid1 = (constant uint8_t *)(iq3s_grid + (qs[4*il+0] | ((qh << 8) & 256)));
|
|
|
|
constant uint8_t * grid2 = (constant uint8_t *)(iq3s_grid + (qs[4*il+1] | ((qh << 7) & 256)));
|
|
|
|
for (int i = 0; i < 4; ++i) {
|
|
|
|
reg[0][i] = dl * grid1[i] * select(1, -1, signs[0] & kmask_iq2xs[i+0]);
|
|
|
|
reg[1][i] = dl * grid2[i] * select(1, -1, signs[0] & kmask_iq2xs[i+4]);
|
|
|
|
}
|
|
|
|
grid1 = (constant uint8_t *)(iq3s_grid + (qs[4*il+2] | ((qh << 6) & 256)));
|
|
|
|
grid2 = (constant uint8_t *)(iq3s_grid + (qs[4*il+3] | ((qh << 5) & 256)));
|
|
|
|
for (int i = 0; i < 4; ++i) {
|
|
|
|
reg[2][i] = dl * grid1[i] * select(1, -1, signs[1] & kmask_iq2xs[i+0]);
|
|
|
|
reg[3][i] = dl * grid2[i] * select(1, -1, signs[1] & kmask_iq2xs[i+4]);
|
|
|
|
}
|
2024-08-27 21:01:45 +02:00
|
|
|
}
|
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
template <typename type4x4>
|
|
|
|
void dequantize_iq2_s(device const block_iq2_s * xb, short il, thread type4x4 & reg) {
|
|
|
|
// il is 0...15 for QK_K = 256 => index of block of 32 is il/2
|
|
|
|
const float d = xb->d;
|
|
|
|
const int ib32 = il/2;
|
|
|
|
il = il%2;
|
|
|
|
// il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16
|
|
|
|
device const uint8_t * qs = xb->qs + 4*ib32 + 2*il;
|
|
|
|
device const uint8_t * signs = qs + QK_K/8;
|
|
|
|
const uint8_t qh = xb->qh[ib32] >> 4*il;
|
|
|
|
const float dl = d * (0.5f + ((xb->scales[ib32] >> 4*il) & 0xf)) * 0.25f;
|
|
|
|
constant uint8_t * grid1 = (constant uint8_t *)(iq2s_grid + (qs[0] | ((qh << 8) & 0x300)));
|
|
|
|
constant uint8_t * grid2 = (constant uint8_t *)(iq2s_grid + (qs[1] | ((qh << 6) & 0x300)));
|
|
|
|
for (int i = 0; i < 8; ++i) {
|
|
|
|
reg[i/4+0][i%4] = dl * grid1[i] * select(1, -1, signs[0] & kmask_iq2xs[i]);
|
|
|
|
reg[i/4+2][i%4] = dl * grid2[i] * select(1, -1, signs[1] & kmask_iq2xs[i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename type4x4>
|
|
|
|
void dequantize_iq1_s(device const block_iq1_s * xb, short il, thread type4x4 & reg) {
|
|
|
|
// il is 0...15 for QK_K = 256 => index of block of 32 is il/2
|
|
|
|
const int ib32 = il/2;
|
|
|
|
il = il%2;
|
|
|
|
const float d = xb->d;
|
|
|
|
device const uint8_t * qs = xb->qs + 4*ib32 + 2*il;
|
|
|
|
device const uint16_t * qh = xb->qh;
|
|
|
|
const float dl = d * (2*((qh[ib32] >> 12) & 7) + 1);
|
|
|
|
const float ml = dl * (qh[ib32] & 0x8000 ? -1 - IQ1S_DELTA : -1 + IQ1S_DELTA);
|
|
|
|
const uint16_t h = qh[ib32] >> 6*il;
|
|
|
|
constant uint8_t * grid1 = (constant uint8_t *)(iq1s_grid_gpu + (qs[0] | ((h << 8) & 0x700)));
|
|
|
|
constant uint8_t * grid2 = (constant uint8_t *)(iq1s_grid_gpu + (qs[1] | ((h << 5) & 0x700)));
|
|
|
|
for (int i = 0; i < 4; ++i) {
|
|
|
|
reg[0][i] = dl * (grid1[i] & 0xf) + ml;
|
|
|
|
reg[1][i] = dl * (grid1[i] >> 4) + ml;
|
|
|
|
reg[2][i] = dl * (grid2[i] & 0xf) + ml;
|
|
|
|
reg[3][i] = dl * (grid2[i] >> 4) + ml;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename type4x4>
|
|
|
|
void dequantize_iq1_m(device const block_iq1_m * xb, short il, thread type4x4 & reg) {
|
|
|
|
// il is 0...15 for QK_K = 256 => index of block of 32 is il/2
|
|
|
|
const int ib32 = il/2;
|
|
|
|
il = il%2;
|
|
|
|
device const uint16_t * sc = (device const uint16_t *)xb->scales;
|
|
|
|
|
|
|
|
iq1m_scale_t scale;
|
|
|
|
scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
|
|
|
|
const float d = scale.f16;
|
|
|
|
|
|
|
|
device const uint8_t * qs = xb->qs + 4*ib32 + 2*il;
|
|
|
|
device const uint8_t * qh = xb->qh + 2*ib32 + il;
|
|
|
|
|
|
|
|
const float dl = d * (2*((sc[ib32/2] >> (6*(ib32%2)+3*il)) & 7) + 1);
|
|
|
|
const float ml1 = dl * (qh[0] & 0x08 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA);
|
|
|
|
const float ml2 = dl * (qh[0] & 0x80 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA);
|
|
|
|
constant uint8_t * grid1 = (constant uint8_t *)(iq1s_grid_gpu + (qs[0] | ((qh[0] << 8) & 0x700)));
|
|
|
|
constant uint8_t * grid2 = (constant uint8_t *)(iq1s_grid_gpu + (qs[1] | ((qh[0] << 4) & 0x700)));
|
|
|
|
for (int i = 0; i < 4; ++i) {
|
|
|
|
reg[0][i] = dl * (grid1[i] & 0xf) + ml1;
|
|
|
|
reg[1][i] = dl * (grid1[i] >> 4) + ml1;
|
|
|
|
reg[2][i] = dl * (grid2[i] & 0xf) + ml2;
|
|
|
|
reg[3][i] = dl * (grid2[i] >> 4) + ml2;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename type4x4>
|
|
|
|
void dequantize_iq4_nl(device const block_iq4_nl * xb, short il, thread type4x4 & reg) {
|
|
|
|
device const uint16_t * q4 = (device const uint16_t *)xb->qs;
|
|
|
|
const float d = xb->d;
|
|
|
|
uint32_t aux32;
|
|
|
|
thread const uint8_t * q8 = (thread const uint8_t *)&aux32;
|
|
|
|
for (int i = 0; i < 4; ++i) {
|
|
|
|
aux32 = ((q4[2*i] | (q4[2*i+1] << 16)) >> 4*il) & 0x0f0f0f0f;
|
|
|
|
reg[i][0] = d * kvalues_iq4nl_f[q8[0]];
|
|
|
|
reg[i][1] = d * kvalues_iq4nl_f[q8[1]];
|
|
|
|
reg[i][2] = d * kvalues_iq4nl_f[q8[2]];
|
|
|
|
reg[i][3] = d * kvalues_iq4nl_f[q8[3]];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename type4x4>
|
|
|
|
void dequantize_iq4_xs(device const block_iq4_xs * xb, short il, thread type4x4 & reg) {
|
|
|
|
// il is 0...15 for QK_K = 256 => index of block of 32 is il/2
|
|
|
|
const int ib32 = il/2;
|
|
|
|
il = il%2;
|
|
|
|
// il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16
|
|
|
|
device const uint32_t * q4 = (device const uint32_t *)xb->qs + 4*ib32;
|
|
|
|
const int ls = ((xb->scales_l[ib32/2] >> 4*(ib32%2)) & 0xf) | (((xb->scales_h >> 2*ib32) & 3) << 4);
|
|
|
|
const float d = (float)xb->d * (ls - 32);
|
|
|
|
uint32_t aux32;
|
|
|
|
thread const uint8_t * q8 = (thread const uint8_t *)&aux32;
|
|
|
|
for (int i = 0; i < 4; ++i) {
|
|
|
|
aux32 = (q4[i] >> 4*il) & 0x0f0f0f0f;
|
|
|
|
reg[i][0] = d * kvalues_iq4nl_f[q8[0]];
|
|
|
|
reg[i][1] = d * kvalues_iq4nl_f[q8[1]];
|
|
|
|
reg[i][2] = d * kvalues_iq4nl_f[q8[2]];
|
|
|
|
reg[i][3] = d * kvalues_iq4nl_f[q8[3]];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
enum ggml_sort_order {
|
|
|
|
GGML_SORT_ORDER_ASC,
|
|
|
|
GGML_SORT_ORDER_DESC,
|
|
|
|
};
|
|
|
|
|
|
|
|
// general-purpose kernel for addition, subtraction, multiplication and division of two tensors
|
|
|
|
// pros: works for non-contiguous tensors, supports broadcast across all dims
|
|
|
|
// cons: not very efficient
|
|
|
|
kernel void kernel_add(
|
|
|
|
device const char * src0,
|
|
|
|
device const char * src1,
|
|
|
|
device char * dst,
|
2023-12-07 21:26:54 +01:00
|
|
|
constant int64_t & ne00,
|
|
|
|
constant int64_t & ne01,
|
|
|
|
constant int64_t & ne02,
|
|
|
|
constant int64_t & ne03,
|
2024-01-02 09:57:44 +01:00
|
|
|
constant uint64_t & nb00,
|
|
|
|
constant uint64_t & nb01,
|
|
|
|
constant uint64_t & nb02,
|
|
|
|
constant uint64_t & nb03,
|
2023-12-07 21:26:54 +01:00
|
|
|
constant int64_t & ne10,
|
|
|
|
constant int64_t & ne11,
|
|
|
|
constant int64_t & ne12,
|
|
|
|
constant int64_t & ne13,
|
2024-01-02 09:57:44 +01:00
|
|
|
constant uint64_t & nb10,
|
|
|
|
constant uint64_t & nb11,
|
|
|
|
constant uint64_t & nb12,
|
|
|
|
constant uint64_t & nb13,
|
2023-12-07 21:26:54 +01:00
|
|
|
constant int64_t & ne0,
|
|
|
|
constant int64_t & ne1,
|
|
|
|
constant int64_t & ne2,
|
|
|
|
constant int64_t & ne3,
|
2024-01-02 09:57:44 +01:00
|
|
|
constant uint64_t & nb0,
|
|
|
|
constant uint64_t & nb1,
|
|
|
|
constant uint64_t & nb2,
|
|
|
|
constant uint64_t & nb3,
|
2024-11-04 12:43:32 +01:00
|
|
|
constant int64_t & offs,
|
|
|
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
|
|
|
uint3 tpitg[[thread_position_in_threadgroup]],
|
|
|
|
uint3 ntg[[threads_per_threadgroup]]) {
|
|
|
|
const int64_t i03 = tgpig.z;
|
|
|
|
const int64_t i02 = tgpig.y;
|
|
|
|
const int64_t i01 = tgpig.x;
|
2023-12-07 21:26:54 +01:00
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
const int64_t i13 = i03 % ne13;
|
|
|
|
const int64_t i12 = i02 % ne12;
|
|
|
|
const int64_t i11 = i01 % ne11;
|
2023-12-07 21:26:54 +01:00
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01 + offs;
|
|
|
|
device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11;
|
|
|
|
device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1 + offs;
|
2023-12-07 21:26:54 +01:00
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
|
|
|
|
const int i10 = i0 % ne10;
|
|
|
|
*((device float *)(dst_ptr + i0*nb0)) = *((device float *)(src0_ptr + i0*nb00)) + *((device float *)(src1_ptr + i10*nb10));
|
2023-12-07 21:26:54 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
kernel void kernel_sub(
|
|
|
|
device const char * src0,
|
|
|
|
device const char * src1,
|
|
|
|
device char * dst,
|
|
|
|
constant int64_t & ne00,
|
|
|
|
constant int64_t & ne01,
|
|
|
|
constant int64_t & ne02,
|
|
|
|
constant int64_t & ne03,
|
|
|
|
constant uint64_t & nb00,
|
|
|
|
constant uint64_t & nb01,
|
|
|
|
constant uint64_t & nb02,
|
|
|
|
constant uint64_t & nb03,
|
|
|
|
constant int64_t & ne10,
|
|
|
|
constant int64_t & ne11,
|
|
|
|
constant int64_t & ne12,
|
|
|
|
constant int64_t & ne13,
|
|
|
|
constant uint64_t & nb10,
|
|
|
|
constant uint64_t & nb11,
|
|
|
|
constant uint64_t & nb12,
|
|
|
|
constant uint64_t & nb13,
|
|
|
|
constant int64_t & ne0,
|
|
|
|
constant int64_t & ne1,
|
|
|
|
constant int64_t & ne2,
|
|
|
|
constant int64_t & ne3,
|
|
|
|
constant uint64_t & nb0,
|
|
|
|
constant uint64_t & nb1,
|
|
|
|
constant uint64_t & nb2,
|
|
|
|
constant uint64_t & nb3,
|
|
|
|
constant int64_t & offs,
|
|
|
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
|
|
|
uint3 tpitg[[thread_position_in_threadgroup]],
|
|
|
|
uint3 ntg[[threads_per_threadgroup]]) {
|
|
|
|
const int64_t i03 = tgpig.z;
|
|
|
|
const int64_t i02 = tgpig.y;
|
|
|
|
const int64_t i01 = tgpig.x;
|
2023-06-04 22:34:30 +02:00
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
const int64_t i13 = i03 % ne13;
|
|
|
|
const int64_t i12 = i02 % ne12;
|
|
|
|
const int64_t i11 = i01 % ne11;
|
2023-06-04 22:34:30 +02:00
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01 + offs;
|
|
|
|
device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11;
|
|
|
|
device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1 + offs;
|
2024-02-17 22:04:16 +01:00
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
|
|
|
|
const int i10 = i0 % ne10;
|
|
|
|
*((device float *)(dst_ptr + i0*nb0)) = *((device float *)(src0_ptr + i0*nb00)) - *((device float *)(src1_ptr + i10*nb10));
|
|
|
|
}
|
|
|
|
}
|
2024-02-17 22:04:16 +01:00
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
kernel void kernel_mul(
|
|
|
|
device const char * src0,
|
|
|
|
device const char * src1,
|
|
|
|
device char * dst,
|
|
|
|
constant int64_t & ne00,
|
|
|
|
constant int64_t & ne01,
|
|
|
|
constant int64_t & ne02,
|
|
|
|
constant int64_t & ne03,
|
|
|
|
constant uint64_t & nb00,
|
|
|
|
constant uint64_t & nb01,
|
|
|
|
constant uint64_t & nb02,
|
|
|
|
constant uint64_t & nb03,
|
|
|
|
constant int64_t & ne10,
|
|
|
|
constant int64_t & ne11,
|
|
|
|
constant int64_t & ne12,
|
|
|
|
constant int64_t & ne13,
|
|
|
|
constant uint64_t & nb10,
|
|
|
|
constant uint64_t & nb11,
|
|
|
|
constant uint64_t & nb12,
|
|
|
|
constant uint64_t & nb13,
|
|
|
|
constant int64_t & ne0,
|
|
|
|
constant int64_t & ne1,
|
|
|
|
constant int64_t & ne2,
|
|
|
|
constant int64_t & ne3,
|
|
|
|
constant uint64_t & nb0,
|
|
|
|
constant uint64_t & nb1,
|
|
|
|
constant uint64_t & nb2,
|
|
|
|
constant uint64_t & nb3,
|
|
|
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
|
|
|
uint3 tpitg[[thread_position_in_threadgroup]],
|
|
|
|
uint3 ntg[[threads_per_threadgroup]]) {
|
|
|
|
const int64_t i03 = tgpig.z;
|
|
|
|
const int64_t i02 = tgpig.y;
|
|
|
|
const int64_t i01 = tgpig.x;
|
2024-02-17 22:04:16 +01:00
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
const int64_t i13 = i03 % ne13;
|
|
|
|
const int64_t i12 = i02 % ne12;
|
|
|
|
const int64_t i11 = i01 % ne11;
|
2024-02-17 22:04:16 +01:00
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01;
|
|
|
|
device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11;
|
|
|
|
device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1;
|
2023-11-01 20:25:00 +01:00
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
|
|
|
|
const int i10 = i0 % ne10;
|
|
|
|
*((device float *)(dst_ptr + i0*nb0)) = *((device float *)(src0_ptr + i0*nb00)) * *((device float *)(src1_ptr + i10*nb10));
|
2023-06-04 22:34:30 +02:00
|
|
|
}
|
2024-11-04 12:43:32 +01:00
|
|
|
}
|
2023-11-01 20:25:00 +01:00
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
kernel void kernel_div(
|
|
|
|
device const char * src0,
|
|
|
|
device const char * src1,
|
|
|
|
device char * dst,
|
|
|
|
constant int64_t & ne00,
|
|
|
|
constant int64_t & ne01,
|
|
|
|
constant int64_t & ne02,
|
|
|
|
constant int64_t & ne03,
|
|
|
|
constant uint64_t & nb00,
|
|
|
|
constant uint64_t & nb01,
|
|
|
|
constant uint64_t & nb02,
|
|
|
|
constant uint64_t & nb03,
|
|
|
|
constant int64_t & ne10,
|
|
|
|
constant int64_t & ne11,
|
|
|
|
constant int64_t & ne12,
|
|
|
|
constant int64_t & ne13,
|
|
|
|
constant uint64_t & nb10,
|
|
|
|
constant uint64_t & nb11,
|
|
|
|
constant uint64_t & nb12,
|
|
|
|
constant uint64_t & nb13,
|
|
|
|
constant int64_t & ne0,
|
|
|
|
constant int64_t & ne1,
|
|
|
|
constant int64_t & ne2,
|
|
|
|
constant int64_t & ne3,
|
|
|
|
constant uint64_t & nb0,
|
|
|
|
constant uint64_t & nb1,
|
|
|
|
constant uint64_t & nb2,
|
|
|
|
constant uint64_t & nb3,
|
|
|
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
|
|
|
uint3 tpitg[[thread_position_in_threadgroup]],
|
|
|
|
uint3 ntg[[threads_per_threadgroup]]) {
|
|
|
|
const int64_t i03 = tgpig.z;
|
|
|
|
const int64_t i02 = tgpig.y;
|
|
|
|
const int64_t i01 = tgpig.x;
|
2023-11-01 20:25:00 +01:00
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
const int64_t i13 = i03 % ne13;
|
|
|
|
const int64_t i12 = i02 % ne12;
|
|
|
|
const int64_t i11 = i01 % ne11;
|
2023-11-01 20:25:00 +01:00
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01;
|
|
|
|
device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11;
|
|
|
|
device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1;
|
2023-11-01 20:25:00 +01:00
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
|
|
|
|
const int i10 = i0 % ne10;
|
|
|
|
*((device float *)(dst_ptr + i0*nb0)) = *((device float *)(src0_ptr + i0*nb00)) / *((device float *)(src1_ptr + i10*nb10));
|
2023-12-01 09:51:24 +01:00
|
|
|
}
|
2024-11-04 12:43:32 +01:00
|
|
|
}
|
2023-06-04 22:34:30 +02:00
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
template<typename T>
|
|
|
|
kernel void kernel_repeat(
|
|
|
|
device const char * src0,
|
|
|
|
device char * dst,
|
|
|
|
constant int64_t & ne00,
|
|
|
|
constant int64_t & ne01,
|
|
|
|
constant int64_t & ne02,
|
|
|
|
constant int64_t & ne03,
|
|
|
|
constant uint64_t & nb00,
|
|
|
|
constant uint64_t & nb01,
|
|
|
|
constant uint64_t & nb02,
|
|
|
|
constant uint64_t & nb03,
|
|
|
|
constant int64_t & ne0,
|
|
|
|
constant int64_t & ne1,
|
|
|
|
constant int64_t & ne2,
|
|
|
|
constant int64_t & ne3,
|
|
|
|
constant uint64_t & nb0,
|
|
|
|
constant uint64_t & nb1,
|
|
|
|
constant uint64_t & nb2,
|
|
|
|
constant uint64_t & nb3,
|
|
|
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
|
|
|
uint3 tpitg[[thread_position_in_threadgroup]],
|
|
|
|
uint3 ntg[[threads_per_threadgroup]]) {
|
|
|
|
const int64_t i3 = tgpig.z;
|
|
|
|
const int64_t i2 = tgpig.y;
|
|
|
|
const int64_t i1 = tgpig.x;
|
2023-06-04 22:34:30 +02:00
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
const int64_t i03 = i3 % ne03;
|
|
|
|
const int64_t i02 = i2 % ne02;
|
|
|
|
const int64_t i01 = i1 % ne01;
|
2023-12-13 13:04:25 +01:00
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01;
|
|
|
|
device char * dst_ptr = dst + i3*nb3 + i2*nb2 + i1*nb1 ;
|
2023-12-13 13:04:25 +01:00
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
|
|
|
|
const int i00 = i0 % ne00;
|
|
|
|
*((device T *)(dst_ptr + i0*nb0)) = *((device T *)(src0_ptr + i00*nb00));
|
|
|
|
}
|
|
|
|
}
|
2023-11-01 20:25:00 +01:00
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
typedef decltype(kernel_repeat<float>) kernel_repeat_t;
|
2023-11-01 20:25:00 +01:00
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
template [[host_name("kernel_repeat_f32")]] kernel kernel_repeat_t kernel_repeat<float>;
|
|
|
|
template [[host_name("kernel_repeat_f16")]] kernel kernel_repeat_t kernel_repeat<half>;
|
|
|
|
template [[host_name("kernel_repeat_i32")]] kernel kernel_repeat_t kernel_repeat<int>;
|
|
|
|
template [[host_name("kernel_repeat_i16")]] kernel kernel_repeat_t kernel_repeat<short>;
|
2023-11-01 20:25:00 +01:00
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
// assumption: src1 is a row
|
|
|
|
// broadcast src1 into src0
|
|
|
|
kernel void kernel_add_row(
|
|
|
|
device const float4 * src0,
|
|
|
|
device const float4 * src1,
|
|
|
|
device float4 * dst,
|
|
|
|
constant uint64_t & nb [[buffer(28)]],
|
|
|
|
uint tpig[[thread_position_in_grid]]) {
|
|
|
|
dst[tpig] = src0[tpig] + src1[tpig % nb];
|
|
|
|
}
|
2023-12-01 09:51:24 +01:00
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
kernel void kernel_sub_row(
|
|
|
|
device const float4 * src0,
|
|
|
|
device const float4 * src1,
|
|
|
|
device float4 * dst,
|
|
|
|
constant uint64_t & nb [[buffer(28)]],
|
|
|
|
uint tpig[[thread_position_in_grid]]) {
|
|
|
|
dst[tpig] = src0[tpig] - src1[tpig % nb];
|
|
|
|
}
|
|
|
|
|
|
|
|
kernel void kernel_mul_row(
|
|
|
|
device const float4 * src0,
|
|
|
|
device const float4 * src1,
|
|
|
|
device float4 * dst,
|
|
|
|
constant uint64_t & nb [[buffer(28)]],
|
|
|
|
uint tpig[[thread_position_in_grid]]) {
|
|
|
|
dst[tpig] = src0[tpig] * src1[tpig % nb];
|
|
|
|
}
|
|
|
|
|
|
|
|
kernel void kernel_div_row(
|
|
|
|
device const float4 * src0,
|
|
|
|
device const float4 * src1,
|
|
|
|
device float4 * dst,
|
|
|
|
constant uint64_t & nb [[buffer(28)]],
|
|
|
|
uint tpig[[thread_position_in_grid]]) {
|
|
|
|
dst[tpig] = src0[tpig] / src1[tpig % nb];
|
|
|
|
}
|
|
|
|
|
|
|
|
kernel void kernel_scale(
|
|
|
|
device const float * src0,
|
|
|
|
device float * dst,
|
|
|
|
constant float & scale,
|
|
|
|
uint tpig[[thread_position_in_grid]]) {
|
|
|
|
dst[tpig] = src0[tpig] * scale;
|
|
|
|
}
|
|
|
|
|
|
|
|
kernel void kernel_scale_4(
|
|
|
|
device const float4 * src0,
|
|
|
|
device float4 * dst,
|
|
|
|
constant float & scale,
|
|
|
|
uint tpig[[thread_position_in_grid]]) {
|
|
|
|
dst[tpig] = src0[tpig] * scale;
|
|
|
|
}
|
|
|
|
|
|
|
|
kernel void kernel_clamp(
|
|
|
|
device const float * src0,
|
|
|
|
device float * dst,
|
|
|
|
constant float & min,
|
|
|
|
constant float & max,
|
|
|
|
uint tpig[[thread_position_in_grid]]) {
|
|
|
|
dst[tpig] = src0[tpig] < min ? min : (src0[tpig] > max ? max : src0[tpig]);
|
|
|
|
}
|
|
|
|
|
|
|
|
kernel void kernel_relu(
|
|
|
|
device const float * src0,
|
|
|
|
device float * dst,
|
|
|
|
uint tpig[[thread_position_in_grid]]) {
|
|
|
|
dst[tpig] = max(0.0f, src0[tpig]);
|
|
|
|
}
|
|
|
|
|
|
|
|
kernel void kernel_sigmoid(
|
|
|
|
device const float * src0,
|
|
|
|
device float * dst,
|
|
|
|
uint tpig[[thread_position_in_grid]]) {
|
|
|
|
dst[tpig] = 1.0f / (1.0f + exp(-src0[tpig]));
|
|
|
|
}
|
|
|
|
|
|
|
|
kernel void kernel_tanh(
|
|
|
|
device const float * src0,
|
|
|
|
device float * dst,
|
|
|
|
uint tpig[[thread_position_in_grid]]) {
|
|
|
|
device const float & x = src0[tpig];
|
|
|
|
dst[tpig] = precise::tanh(x);
|
|
|
|
}
|
|
|
|
|
|
|
|
constant float GELU_COEF_A = 0.044715f;
|
|
|
|
constant float GELU_QUICK_COEF = -1.702f;
|
|
|
|
constant float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
|
|
|
|
|
|
|
|
kernel void kernel_gelu(
|
|
|
|
device const float * src0,
|
|
|
|
device float * dst,
|
|
|
|
uint tpig[[thread_position_in_grid]]) {
|
|
|
|
device const float & x = src0[tpig];
|
|
|
|
|
|
|
|
dst[tpig] = 0.5f*x*(1.0f + precise::tanh(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
|
|
|
|
}
|
|
|
|
|
|
|
|
kernel void kernel_gelu_4(
|
|
|
|
device const float4 * src0,
|
|
|
|
device float4 * dst,
|
|
|
|
uint tpig[[thread_position_in_grid]]) {
|
|
|
|
device const float4 & x = src0[tpig];
|
|
|
|
|
|
|
|
// BEWARE !!!
|
|
|
|
// Simply using "tanh" instead of "precise::tanh" will sometimes results in NaNs!
|
|
|
|
// This was observed with Falcon 7B and 40B models
|
|
|
|
//
|
|
|
|
dst[tpig] = 0.5f*x*(1.0f + precise::tanh(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
|
|
|
|
}
|
|
|
|
|
|
|
|
kernel void kernel_gelu_quick(
|
|
|
|
device const float * src0,
|
|
|
|
device float * dst,
|
|
|
|
uint tpig[[thread_position_in_grid]]) {
|
|
|
|
device const float & x = src0[tpig];
|
|
|
|
|
|
|
|
dst[tpig] = x*(1.0f/(1.0f+exp(GELU_QUICK_COEF*x)));
|
|
|
|
}
|
|
|
|
|
|
|
|
kernel void kernel_gelu_quick_4(
|
|
|
|
device const float4 * src0,
|
|
|
|
device float4 * dst,
|
|
|
|
uint tpig[[thread_position_in_grid]]) {
|
|
|
|
device const float4 & x = src0[tpig];
|
|
|
|
|
|
|
|
dst[tpig] = x*(1.0f/(1.0f+exp(GELU_QUICK_COEF*x)));
|
|
|
|
}
|
|
|
|
|
|
|
|
kernel void kernel_silu(
|
|
|
|
device const float * src0,
|
|
|
|
device float * dst,
|
|
|
|
uint tpig[[thread_position_in_grid]]) {
|
|
|
|
device const float & x = src0[tpig];
|
|
|
|
dst[tpig] = x / (1.0f + exp(-x));
|
|
|
|
}
|
|
|
|
|
|
|
|
kernel void kernel_silu_4(
|
|
|
|
device const float4 * src0,
|
|
|
|
device float4 * dst,
|
|
|
|
uint tpig[[thread_position_in_grid]]) {
|
|
|
|
device const float4 & x = src0[tpig];
|
|
|
|
dst[tpig] = x / (1.0f + exp(-x));
|
|
|
|
}
|
|
|
|
|
|
|
|
kernel void kernel_sqr(
|
|
|
|
device const float * src0,
|
|
|
|
device float * dst,
|
|
|
|
uint tpig[[thread_position_in_grid]]) {
|
|
|
|
dst[tpig] = src0[tpig] * src0[tpig];
|
|
|
|
}
|
|
|
|
|
|
|
|
kernel void kernel_sqrt(
|
|
|
|
device const float * src0,
|
|
|
|
device float * dst,
|
|
|
|
uint tpig[[thread_position_in_grid]]) {
|
|
|
|
dst[tpig] = sqrt(src0[tpig]);
|
|
|
|
}
|
|
|
|
|
|
|
|
kernel void kernel_sin(
|
|
|
|
device const float * src0,
|
|
|
|
device float * dst,
|
|
|
|
uint tpig[[thread_position_in_grid]]) {
|
|
|
|
dst[tpig] = sin(src0[tpig]);
|
|
|
|
}
|
|
|
|
|
|
|
|
kernel void kernel_cos(
|
|
|
|
device const float * src0,
|
|
|
|
device float * dst,
|
|
|
|
uint tpig[[thread_position_in_grid]]) {
|
|
|
|
dst[tpig] = cos(src0[tpig]);
|
|
|
|
}
|
|
|
|
|
|
|
|
kernel void kernel_sum_rows(
|
|
|
|
device const float * src0,
|
|
|
|
device float * dst,
|
|
|
|
constant int64_t & ne00,
|
|
|
|
constant int64_t & ne01,
|
|
|
|
constant int64_t & ne02,
|
|
|
|
constant int64_t & ne03,
|
|
|
|
constant uint64_t & nb00,
|
|
|
|
constant uint64_t & nb01,
|
|
|
|
constant uint64_t & nb02,
|
|
|
|
constant uint64_t & nb03,
|
|
|
|
constant int64_t & ne10,
|
|
|
|
constant int64_t & ne11,
|
|
|
|
constant int64_t & ne12,
|
|
|
|
constant int64_t & ne13,
|
|
|
|
constant uint64_t & nb10,
|
|
|
|
constant uint64_t & nb11,
|
|
|
|
constant uint64_t & nb12,
|
|
|
|
constant uint64_t & nb13,
|
|
|
|
constant int64_t & ne0,
|
|
|
|
constant int64_t & ne1,
|
|
|
|
constant int64_t & ne2,
|
|
|
|
constant int64_t & ne3,
|
|
|
|
constant uint64_t & nb0,
|
|
|
|
constant uint64_t & nb1,
|
|
|
|
constant uint64_t & nb2,
|
|
|
|
constant uint64_t & nb3,
|
|
|
|
uint3 tpig[[thread_position_in_grid]]) {
|
|
|
|
int64_t i3 = tpig.z;
|
|
|
|
int64_t i2 = tpig.y;
|
|
|
|
int64_t i1 = tpig.x;
|
|
|
|
|
|
|
|
if (i3 >= ne03 || i2 >= ne02 || i1 >= ne01) {
|
|
|
|
return;
|
2023-12-01 09:51:24 +01:00
|
|
|
}
|
2023-11-01 20:25:00 +01:00
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
device const float * src_row = (device const float *) ((device const char *) src0 + i1*nb01 + i2*nb02 + i3*nb03);
|
|
|
|
device float * dst_row = (device float *) ((device char *) dst + i1*nb1 + i2*nb2 + i3*nb3);
|
2023-09-11 09:30:11 +02:00
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
float row_sum = 0;
|
|
|
|
|
|
|
|
for (int64_t i0 = 0; i0 < ne00; i0++) {
|
|
|
|
row_sum += src_row[i0];
|
2023-06-04 22:34:30 +02:00
|
|
|
}
|
2024-11-04 12:43:32 +01:00
|
|
|
|
|
|
|
dst_row[0] = row_sum;
|
2023-09-11 09:30:11 +02:00
|
|
|
}
|
2023-06-04 22:34:30 +02:00
|
|
|
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
template<typename T>
|
2024-11-04 12:43:32 +01:00
|
|
|
kernel void kernel_soft_max(
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
device const char * src0,
|
|
|
|
device const char * src1,
|
|
|
|
device char * dst,
|
2023-09-11 09:30:11 +02:00
|
|
|
constant int64_t & ne00,
|
|
|
|
constant int64_t & ne01,
|
|
|
|
constant int64_t & ne02,
|
2023-12-01 09:51:24 +01:00
|
|
|
constant float & scale,
|
2024-02-17 22:04:16 +01:00
|
|
|
constant float & max_bias,
|
|
|
|
constant float & m0,
|
|
|
|
constant float & m1,
|
|
|
|
constant uint32_t & n_head_log2,
|
|
|
|
threadgroup float * buf [[threadgroup(0)]],
|
2023-11-01 20:25:00 +01:00
|
|
|
uint tgpig[[threadgroup_position_in_grid]],
|
|
|
|
uint tpitg[[thread_position_in_threadgroup]],
|
|
|
|
uint sgitg[[simdgroup_index_in_threadgroup]],
|
|
|
|
uint tiisg[[thread_index_in_simdgroup]],
|
|
|
|
uint ntg[[threads_per_threadgroup]]) {
|
|
|
|
const int64_t i03 = (tgpig) / (ne02*ne01);
|
|
|
|
const int64_t i02 = (tgpig - i03*ne02*ne01) / ne01;
|
|
|
|
const int64_t i01 = (tgpig - i03*ne02*ne01 - i02*ne01);
|
2023-06-04 22:34:30 +02:00
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
device const float * psrc0 = (device const float *) src0 + (i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00);
|
|
|
|
device const T * pmask = src1 != src0 ? (device const T *) src1 + i01*ne00 : nullptr;
|
|
|
|
device float * pdst = (device float *) dst + (i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00);
|
2023-06-04 22:34:30 +02:00
|
|
|
|
2024-05-11 09:32:41 +02:00
|
|
|
float slope = 1.0f;
|
2024-02-17 22:04:16 +01:00
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
// ALiBi
|
2024-02-17 22:04:16 +01:00
|
|
|
if (max_bias > 0.0f) {
|
|
|
|
const int64_t h = i02;
|
|
|
|
|
|
|
|
const float base = h < n_head_log2 ? m0 : m1;
|
|
|
|
const int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
|
|
|
|
|
|
|
|
slope = pow(base, exp);
|
|
|
|
}
|
|
|
|
|
2023-09-11 09:30:11 +02:00
|
|
|
// parallel max
|
2024-11-04 12:43:32 +01:00
|
|
|
float lmax = -INFINITY;
|
2023-11-01 20:25:00 +01:00
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
|
|
|
|
lmax = MAX(lmax, psrc0[i00]*scale + (pmask ? slope*pmask[i00] : 0.0f));
|
2023-09-11 09:30:11 +02:00
|
|
|
}
|
2023-06-04 22:34:30 +02:00
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
// find the max value in the block
|
2023-12-01 09:51:24 +01:00
|
|
|
float max_val = simd_max(lmax);
|
|
|
|
if (ntg > N_SIMDWIDTH) {
|
|
|
|
if (sgitg == 0) {
|
|
|
|
buf[tiisg] = -INFINITY;
|
|
|
|
}
|
2023-11-01 20:25:00 +01:00
|
|
|
|
2023-12-01 09:51:24 +01:00
|
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
2023-11-01 20:25:00 +01:00
|
|
|
|
2023-12-01 09:51:24 +01:00
|
|
|
if (tiisg == 0) {
|
|
|
|
buf[sgitg] = max_val;
|
|
|
|
}
|
|
|
|
|
|
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
2023-11-01 20:25:00 +01:00
|
|
|
|
2023-12-01 09:51:24 +01:00
|
|
|
max_val = buf[tiisg];
|
|
|
|
max_val = simd_max(max_val);
|
|
|
|
}
|
2023-09-11 09:30:11 +02:00
|
|
|
|
|
|
|
// parallel sum
|
2024-11-04 12:43:32 +01:00
|
|
|
float lsum = 0.0f;
|
|
|
|
for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
|
|
|
|
const float exp_psrc0 = exp((psrc0[i00]*scale + (pmask ? slope*pmask[i00] : 0.0f)) - max_val);
|
|
|
|
lsum += exp_psrc0;
|
|
|
|
pdst[i00] = exp_psrc0;
|
2023-09-11 09:30:11 +02:00
|
|
|
}
|
|
|
|
|
2024-11-04 12:43:32 +01:00
|
|
|
// This barrier fixes a failing test
|
|
|
|
// ref: https://github.com/ggerganov/ggml/pull/621#discussion_r1425156335
|
|
|
|
threadgroup_barrier(mem_flags::mem_none);
|
|
|
|
|
|
|
|
float sum = simd_sum(lsum);
|
|
|
|
|
|
|
|
if (ntg > N_SIMDWIDTH) {
|
|
|
|
if (sgitg == 0) {
|
|
|
|
buf[tiisg] = 0.0f;
|
|
|
|
}
|
|
|
|
|
|
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
|
|
|
|
|
|
if (tiisg == 0) {
|
|
|
|
buf[sgitg] = sum;
|
|
|
|
}
|
|
|
|
|
|
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
|
|
|
|
|
|
sum = buf[tiisg];
|
|
|
|
sum = simd_sum(sum);
|
|
|
|
}
|
|
|
|
|
|
|
|
const float inv_sum = 1.0f/sum;
|
|
|
|
|
|
|
|
for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
|
|
|
|
pdst[i00] *= inv_sum;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename T>
|
|
|
|
kernel void kernel_soft_max_4(
|
|
|
|
device const char * src0,
|
|
|
|
device const char * src1,
|
|
|
|
device char * dst,
|
|
|
|
constant int64_t & ne00,
|
|
|
|
constant int64_t & ne01,
|
|
|
|
constant int64_t & ne02,
|
|
|
|
constant float & scale,
|
|
|
|
constant float & max_bias,
|
|
|
|
constant float & m0,
|
|
|
|
constant float & m1,
|
|
|
|
constant uint32_t & n_head_log2,
|
|
|
|
threadgroup float * buf [[threadgroup(0)]],
|
|
|
|
uint tgpig[[threadgroup_position_in_grid]],
|
|
|
|
uint tpitg[[thread_position_in_threadgroup]],
|
|
|
|
uint sgitg[[simdgroup_index_in_threadgroup]],
|
|
|
|
uint tiisg[[thread_index_in_simdgroup]],
|
|
|
|
uint ntg[[threads_per_threadgroup]]) {
|
|
|
|
const int64_t i03 = (tgpig) / (ne02*ne01);
|
|
|
|
const int64_t i02 = (tgpig - i03*ne02*ne01) / ne01;
|
|
|
|
const int64_t i01 = (tgpig - i03*ne02*ne01 - i02*ne01);
|
|
|
|
|
|
|
|
device const float4 * psrc4 = (device const float4 *) src0 + (i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00)/4;
|
|
|
|
device const T * pmask = src1 != src0 ? (device const T *) src1 + i01*ne00/4 : nullptr;
|
|
|
|
device float4 * pdst4 = (device float4 *) dst + (i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00)/4;
|
|
|
|
|
|
|
|
float slope = 1.0f;
|
|
|
|
|
|
|
|
if (max_bias > 0.0f) {
|
|
|
|
const int64_t h = i02;
|
|
|
|
|
|
|
|
const float base = h < n_head_log2 ? m0 : m1;
|
|
|
|
const int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
|
|
|
|
|
|
|
|
slope = pow(base, exp);
|
|
|
|
}
|
|
|
|
|
|
|
|
// parallel max
|
|
|
|
float4 lmax4 = -INFINITY;
|
|
|
|
|
|
|
|
for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
|
|
|
|
lmax4 = fmax(lmax4, psrc4[i00]*scale + (float4)((pmask ? slope*pmask[i00] : 0.0f)));
|
|
|
|
}
|
|
|
|
|
|
|
|
const float lmax = MAX(MAX(lmax4[0], lmax4[1]), MAX(lmax4[2], lmax4[3]));
|
|
|
|
|
|
|
|
float max_val = simd_max(lmax);
|
|
|
|
if (ntg > N_SIMDWIDTH) {
|
|
|
|
if (sgitg == 0) {
|
|
|
|
buf[tiisg] = -INFINITY;
|
|
|
|
}
|
|
|
|
|
|
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
|
|
|
|
|
|
if (tiisg == 0) {
|
|
|
|
buf[sgitg] = max_val;
|
|
|
|
}
|
|
|
|
|
|
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
|
|
|
|
|
|
max_val = buf[tiisg];
|
|
|
|
max_val = simd_max(max_val);
|
|
|
|
}
|
|
|
|
|
|
|
|
// parallel sum
|
|
|
|
float4 lsum4 = 0.0f;
|
|
|
|
for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
|
|
|
|
const float4 exp_psrc4 = exp((psrc4[i00]*scale + (float4)((pmask ? slope*pmask[i00] : 0.0f))) - max_val);
|
|
|
|
lsum4 += exp_psrc4;
|
|
|
|
pdst4[i00] = exp_psrc4;
|
|
|
|
}
|
|
|
|
|
|
|
|
const float lsum = lsum4[0] + lsum4[1] + lsum4[2] + lsum4[3];
|
2023-12-13 13:04:25 +01:00
|
|
|
|
|
|
|
// This barrier fixes a failing test
|
|
|
|
// ref: https://github.com/ggerganov/ggml/pull/621#discussion_r1425156335
|
|
|
|
threadgroup_barrier(mem_flags::mem_none);
|
|
|
|
|
2023-11-01 20:25:00 +01:00
|
|
|
float sum = simd_sum(lsum);
|
2023-12-13 13:04:25 +01:00
|
|
|
|
2023-12-01 09:51:24 +01:00
|
|
|
if (ntg > N_SIMDWIDTH) {
|
|
|
|
if (sgitg == 0) {
|
|
|
|
buf[tiisg] = 0.0f;
|
|
|
|
}
|
2023-11-01 20:25:00 +01:00
|
|
|
|
2023-12-01 09:51:24 +01:00
|
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
2023-11-01 20:25:00 +01:00
|
|
|
|
2023-12-01 09:51:24 +01:00
|
|
|
if (tiisg == 0) {
|
|
|
|
buf[sgitg] = sum;
|
|
|
|
}
|
2023-11-01 20:25:00 +01:00
|
|
|
|
2023-12-01 09:51:24 +01:00
|
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
|
|
|
|
|
|
sum = buf[tiisg];
|
|
|
|
sum = simd_sum(sum);
|
|
|
|
}
|
2023-09-11 09:30:11 +02:00
|
|
|
|
2023-12-01 09:51:24 +01:00
|
|
|
const float inv_sum = 1.0f/sum;
|
2023-11-01 20:25:00 +01:00
|
|
|
|
|
|
|
for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
|
2023-12-01 09:51:24 +01:00
|
|
|
pdst4[i00] *= inv_sum;
|
2023-06-04 22:34:30 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
typedef decltype(kernel_soft_max<float>) kernel_soft_max_t;
|
|
|
|
typedef decltype(kernel_soft_max_4<float4>) kernel_soft_max_4_t;
|
|
|
|
|
|
|
|
template [[host_name("kernel_soft_max_f16")]] kernel kernel_soft_max_t kernel_soft_max<half>;
|
|
|
|
template [[host_name("kernel_soft_max_f32")]] kernel kernel_soft_max_t kernel_soft_max<float>;
|
|
|
|
template [[host_name("kernel_soft_max_f16_4")]] kernel kernel_soft_max_4_t kernel_soft_max_4<half4>;
|
|
|
|
template [[host_name("kernel_soft_max_f32_4")]] kernel kernel_soft_max_4_t kernel_soft_max_4<float4>;
|
|
|
|
|
2023-06-04 22:34:30 +02:00
|
|
|
kernel void kernel_diag_mask_inf(
|
|
|
|
device const float * src0,
|
|
|
|
device float * dst,
|
|
|
|
constant int64_t & ne00,
|
|
|
|
constant int64_t & ne01,
|
|
|
|
constant int & n_past,
|
|
|
|
uint3 tpig[[thread_position_in_grid]]) {
|
|
|
|
const int64_t i02 = tpig[2];
|
|
|
|
const int64_t i01 = tpig[1];
|
|
|
|
const int64_t i00 = tpig[0];
|
|
|
|
|
|
|
|
if (i00 > n_past + i01) {
|
|
|
|
dst[i02*ne01*ne00 + i01*ne00 + i00] = -INFINITY;
|
|
|
|
} else {
|
|
|
|
dst[i02*ne01*ne00 + i01*ne00 + i00] = src0[i02*ne01*ne00 + i01*ne00 + i00];
|
2023-11-01 20:25:00 +01:00
|
|
|
}
|
2023-09-11 09:30:11 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
kernel void kernel_diag_mask_inf_8(
|
|
|
|
device const float4 * src0,
|
|
|
|
device float4 * dst,
|
|
|
|
constant int64_t & ne00,
|
|
|
|
constant int64_t & ne01,
|
|
|
|
constant int & n_past,
|
|
|
|
uint3 tpig[[thread_position_in_grid]]) {
|
|
|
|
|
|
|
|
const int64_t i = 2*tpig[0];
|
|
|
|
|
|
|
|
dst[i+0] = src0[i+0];
|
|
|
|
dst[i+1] = src0[i+1];
|
|
|
|
int64_t i4 = 4*i;
|
|
|
|
const int64_t i02 = i4/(ne00*ne01); i4 -= i02*ne00*ne01;
|
|
|
|
const int64_t i01 = i4/(ne00); i4 -= i01*ne00;
|
|
|
|
const int64_t i00 = i4;
|
|
|
|
for (int k = 3; k >= 0; --k) {
|
|
|
|
if (i00 + 4 + k <= n_past + i01) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
dst[i+1][k] = -INFINITY;
|
|
|
|
if (i00 + k > n_past + i01) {
|
|
|
|
dst[i][k] = -INFINITY;
|
|
|
|
}
|
2023-06-04 22:34:30 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2024-08-26 16:55:36 +02:00
|
|
|
// ref: ggml.c:ggml_compute_forward_ssm_conv_f32
|
|
|
|
// TODO: optimize
|
|
|
|
kernel void kernel_ssm_conv_f32(
|
|
|
|
device const void * src0,
|
|
|
|
device const void * src1,
|
|
|
|
device float * dst,
|
|
|
|
constant int64_t & ne00,
|
|
|
|
constant int64_t & ne01,
|
|
|
|
constant int64_t & ne02,
|
|
|
|
constant uint64_t & nb00,
|
|
|
|
constant uint64_t & nb01,
|
|
|
|
constant uint64_t & nb02,
|
|
|
|
constant int64_t & ne10,
|
|
|
|
constant int64_t & ne11,
|
|
|
|
constant uint64_t & nb10,
|
|
|
|
constant uint64_t & nb11,
|
|
|
|
constant int64_t & ne0,
|
|
|
|
constant int64_t & ne1,
|
|
|
|
constant int64_t & ne2,
|
|
|
|
constant uint64_t & nb0,
|
|
|
|
constant uint64_t & nb1,
|
|
|
|
constant uint64_t & nb2,
|
|
|
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
|
|
|
uint3 tpitg[[thread_position_in_threadgroup]],
|
|
|
|
uint3 ntg[[threads_per_threadgroup]]) {
|
|
|
|
const int64_t ir = tgpig.x;
|
|
|
|
const int64_t i2 = tgpig.y;
|
|
|
|
const int64_t i3 = tgpig.z;
|
|
|
|
|
|
|
|
const int64_t nc = ne10;
|
2024-10-25 21:26:15 +02:00
|
|
|
//const int64_t ncs = ne00;
|
|
|
|
//const int64_t nr = ne01;
|
|
|
|
//const int64_t n_t = ne1;
|
|
|
|
//const int64_t n_s = ne2;
|
2024-08-26 16:55:36 +02:00
|
|
|
|
|
|
|
device const float * s = (device const float *) ((device const char *) src0 + ir*nb01 + i2*nb00 + i3*nb02);
|
|
|
|
device const float * c = (device const float *) ((device const char *) src1 + ir*nb11);
|
|
|
|
device float * x = (device float *) ((device char *) dst + ir*nb0 + i2*nb1 + i3*nb2);
|
|
|
|
|
|
|
|
float sumf = 0.0f;
|
|
|
|
|
|
|
|
for (int64_t i0 = 0; i0 < nc; ++i0) {
|
|
|
|
sumf += s[i0] * c[i0];
|
|
|
|
}
|
|
|
|
|
|
|
|
x[0] = sumf;
|
|
|
|
}
|
|
|
|
|
|
|
|
// ref: ggml.c:ggml_compute_forward_ssm_scan_f32
|
|
|
|
// TODO: optimize
|
|
|
|
kernel void kernel_ssm_scan_f32(
|
|
|
|
device const void * src0,
|
|
|
|
device const void * src1,
|
|
|
|
device const void * src2,
|
|
|
|
device const void * src3,
|
|
|
|
device const void * src4,
|
|
|
|
device const void * src5,
|
|
|
|
device float * dst,
|
|
|
|
constant int64_t & d_state,
|
|
|
|
constant int64_t & d_inner,
|
|
|
|
constant int64_t & n_seq_tokens,
|
|
|
|
constant int64_t & n_seqs,
|
|
|
|
constant uint64_t & nb00,
|
|
|
|
constant uint64_t & nb01,
|
|
|
|
constant uint64_t & nb02,
|
|
|
|
constant uint64_t & nb10,
|
|
|
|
constant uint64_t & nb11,
|
|
|
|
constant uint64_t & nb12,
|
|
|
|
constant uint64_t & nb13,
|
|
|
|
constant uint64_t & nb20,
|
|
|
|
constant uint64_t & nb21,
|
|
|
|
constant uint64_t & nb22,
|
|
|
|
constant uint64_t & nb30,
|
|
|
|
constant uint64_t & nb31,
|
|
|
|
constant uint64_t & nb40,
|
|
|
|
constant uint64_t & nb41,
|
|
|
|
constant uint64_t & nb42,
|
|
|
|
constant uint64_t & nb50,
|
|
|
|
constant uint64_t & nb51,
|
|
|
|
constant uint64_t & nb52,
|
|
|
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
|
|
|
uint3 tpitg[[thread_position_in_threadgroup]],
|
|
|
|
uint3 ntg[[threads_per_threadgroup]]) {
|
|
|
|
const int64_t ir = tgpig.x;
|
|
|
|
const int64_t i3 = tgpig.y;
|
|
|
|
|
|
|
|
const int64_t nc = d_state;
|
2024-10-25 21:26:15 +02:00
|
|
|
//const int64_t nr = d_inner;
|
2024-08-26 16:55:36 +02:00
|
|
|
const int64_t n_t = n_seq_tokens;
|
2024-10-25 21:26:15 +02:00
|
|
|
//const int64_t n_s = n_seqs;
|
2024-08-26 16:55:36 +02:00
|
|
|
|
|
|
|
for (int64_t i2 = 0; i2 < n_t; ++i2) {
|
|
|
|
device const float * s0 = (device const float *) ((device const char *) src0 + ir*nb01 + i3*nb02);
|
|
|
|
device const float * x = (device const float *) ((device const char *) src1 + ir*nb10 + i2*nb11 + i3*nb12);
|
|
|
|
device const float * dt = (device const float *) ((device const char *) src2 + ir*nb20 + i2*nb21 + i3*nb22);
|
|
|
|
device const float * A = (device const float *) ((device const char *) src3 + ir*nb31);
|
|
|
|
device const float * B = (device const float *) ((device const char *) src4 + i2*nb41 + i3*nb42);
|
|
|
|
device const float * C = (device const float *) ((device const char *) src5 + i2*nb51 + i3*nb52);
|
|
|
|
device float * y = (device float *) ((device char *) dst + ir*nb10 + i2*nb11 + i3*nb12); // TODO: do not use src1 strides
|
|
|
|
device float * s = (device float *) ((device char *) dst + ir*nb01 + i3*nb02 + nb13);
|
|
|
|
|
|
|
|
if (i2 > 0) {
|
|
|
|
s0 = s;
|
|
|
|
}
|
|
|
|
|
|
|
|
// i1 == 0
|
|
|
|
float dt_soft_plus = dt[0] <= 20.0f ? log(1.0f + exp(dt[0])) : dt[0];
|
|
|
|
float x_dt = x[0] * dt_soft_plus;
|
|
|
|
float sumf = 0.0f;
|
|
|
|
|
|
|
|
for (int64_t i0 = 0; i0 < nc; ++i0) {
|
|
|
|
int64_t i = i0;
|
|
|
|
float state = (s0[i] * exp(dt_soft_plus * A[i])) + (B[i0] * x_dt);
|
|
|
|
sumf += state * C[i0];
|
|
|
|
s[i] = state;
|
|
|
|
}
|
|
|
|
|
|
|
|
y[0] = sumf;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-06-17 16:37:49 +02:00
|
|
|
kernel void kernel_norm(
|
|
|
|
device const void * src0,
|
|
|
|
device float * dst,
|
|
|
|
constant int64_t & ne00,
|
|
|
|
constant uint64_t & nb01,
|
|
|
|
constant float & eps,
|
|
|
|
threadgroup float * sum [[threadgroup(0)]],
|
|
|
|
uint tgpig[[threadgroup_position_in_grid]],
|
|
|
|
uint tpitg[[thread_position_in_threadgroup]],
|
|
|
|
uint ntg[[threads_per_threadgroup]]) {
|
|
|
|
device const float * x = (device const float *) ((device const char *) src0 + tgpig*nb01);
|
|
|
|
// MEAN
|
|
|
|
// parallel sum
|
|
|
|
sum[tpitg] = 0.0f;
|
|
|
|
for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
|
|
|
|
sum[tpitg] += x[i00];
|
|
|
|
}
|
|
|
|
// reduce
|
|
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
|
|
for (uint i = ntg/2; i > 0; i /= 2) {
|
|
|
|
if (tpitg < i) {
|
|
|
|
sum[tpitg] += sum[tpitg + i];
|
|
|
|
}
|
|
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
|
|
}
|
2023-09-07 15:42:42 +02:00
|
|
|
const float mean = sum[0] / ne00;
|
2023-06-17 16:37:49 +02:00
|
|
|
|
2023-09-07 15:42:42 +02:00
|
|
|
// recenter and VARIANCE
|
|
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
2023-06-17 16:37:49 +02:00
|
|
|
device float * y = dst + tgpig*ne00;
|
2023-09-07 14:49:09 +02:00
|
|
|
sum[tpitg] = 0.0f;
|
|
|
|
for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
|
2023-09-07 15:42:42 +02:00
|
|
|
y[i00] = x[i00] - mean;
|
2023-06-17 16:37:49 +02:00
|
|
|
sum[tpitg] += y[i00] * y[i00];
|
|
|
|
}
|
2023-09-03 10:06:22 +02:00
|
|
|
|
2023-06-17 16:37:49 +02:00
|
|
|
// reduce
|
|
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
|
|
for (uint i = ntg/2; i > 0; i /= 2) {
|
|
|
|
if (tpitg < i) {
|
|
|
|
sum[tpitg] += sum[tpitg + i];
|
|
|
|
}
|
|
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
|
|
}
|
2023-09-07 15:42:42 +02:00
|
|
|
const float variance = sum[0] / ne00;
|
2023-06-17 16:37:49 +02:00
|
|
|
|
|
|
|
const float scale = 1.0f/sqrt(variance + eps);
|
|
|
|
for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
|
|
|
|
y[i00] = y[i00] * scale;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-06-04 22:34:30 +02:00
|
|
|
kernel void kernel_rms_norm(
|
|
|
|
device const void * src0,
|
|
|
|
device float * dst,
|
|
|
|
constant int64_t & ne00,
|
|
|
|
constant uint64_t & nb01,
|
|
|
|
constant float & eps,
|
2023-12-01 09:51:24 +01:00
|
|
|
threadgroup float * buf [[threadgroup(0)]],
|
2023-06-04 22:34:30 +02:00
|
|
|
uint tgpig[[threadgroup_position_in_grid]],
|
|
|
|
uint tpitg[[thread_position_in_threadgroup]],
|
2023-07-20 12:32:22 +02:00
|
|
|
uint sgitg[[simdgroup_index_in_threadgroup]],
|
|
|
|
uint tiisg[[thread_index_in_simdgroup]],
|
2023-06-04 22:34:30 +02:00
|
|
|
uint ntg[[threads_per_threadgroup]]) {
|
2023-12-01 09:51:24 +01:00
|
|
|
device const float4 * x = (device const float4 *) ((device const char *) src0 + tgpig*nb01);
|
2023-10-09 13:32:17 +02:00
|
|
|
|
|
|
|
float4 sumf = 0;
|
|
|
|
float all_sum = 0;
|
2023-06-04 22:34:30 +02:00
|
|
|
|
|
|
|
// parallel sum
|
2023-07-20 12:32:22 +02:00
|
|
|
for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
|
|
|
|
sumf += x[i00] * x[i00];
|
|
|
|
}
|
|
|
|
all_sum = sumf[0] + sumf[1] + sumf[2] + sumf[3];
|
|
|
|
all_sum = simd_sum(all_sum);
|
2023-12-01 09:51:24 +01:00
|
|
|
if (ntg > N_SIMDWIDTH) {
|
|
|
|
if (sgitg == 0) {
|
|
|
|
buf[tiisg] = 0.0f;
|
|
|
|
}
|
2023-06-04 22:34:30 +02:00
|
|
|
|
2023-12-01 09:51:24 +01:00
|
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
2023-10-09 13:32:17 +02:00
|
|
|
|
2023-12-01 09:51:24 +01:00
|
|
|
if (tiisg == 0) {
|
|
|
|
buf[sgitg] = all_sum;
|
2023-10-09 13:32:17 +02:00
|
|
|
}
|
2023-06-04 22:34:30 +02:00
|
|
|
|
2023-12-01 09:51:24 +01:00
|
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
|
|
|
|
|
|
all_sum = buf[tiisg];
|
|
|
|
all_sum = simd_sum(all_sum);
|
|
|
|
}
|
2023-06-04 22:34:30 +02:00
|
|
|
|
2023-12-01 09:51:24 +01:00
|
|
|
const float mean = all_sum/ne00;
|
2023-06-04 22:34:30 +02:00
|
|
|
const float scale = 1.0f/sqrt(mean + eps);
|
|
|
|
|
2023-07-20 12:32:22 +02:00
|
|
|
device float4 * y = (device float4 *) (dst + tgpig*ne00);
|
|
|
|
for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
|
2023-06-04 22:34:30 +02:00
|
|
|
y[i00] = x[i00] * scale;
|
|
|
|
}
|
2023-07-20 12:32:22 +02:00
|
|
|
}
|
|
|
|
|
2023-12-13 20:54:54 +01:00
|
|
|
kernel void kernel_group_norm(
|
|
|
|
device const float * src0,
|
|
|
|
device float * dst,
|
|
|
|
constant int64_t & ne00,
|
|
|
|
constant int64_t & ne01,
|
|
|
|
constant int64_t & ne02,
|
|
|
|
constant uint64_t & nb00,
|
|
|
|
constant uint64_t & nb01,
|
|
|
|
constant uint64_t & nb02,
|
|
|
|
constant int32_t & n_groups,
|
|
|
|
constant float & eps,
|
|
|
|
threadgroup float * buf [[threadgroup(0)]],
|
|
|
|
uint tgpig[[threadgroup_position_in_grid]],
|
|
|
|
uint tpitg[[thread_position_in_threadgroup]],
|
|
|
|
uint sgitg[[simdgroup_index_in_threadgroup]],
|
|
|
|
uint tiisg[[thread_index_in_simdgroup]],
|
|
|
|
uint ntg[[threads_per_threadgroup]]) {
|
|
|
|
const int64_t ne = ne00*ne01*ne02;
|
|
|
|
const int64_t gs = ne00*ne01*((ne02 + n_groups - 1) / n_groups);
|
|
|
|
|
|
|
|
int start = tgpig * gs;
|
|
|
|
int end = start + gs;
|
|
|
|
|
|
|
|
start += tpitg;
|
|
|
|
|
|
|
|
if (end >= ne) {
|
|
|
|
end = ne;
|
|
|
|
}
|
|
|
|
|
|
|
|
float tmp = 0.0f; // partial sum for thread in warp
|
|
|
|
|
|
|
|
for (int j = start; j < end; j += ntg) {
|
|
|
|
tmp += src0[j];
|
|
|
|
}
|
|
|
|
|
|
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
|
|
tmp = simd_sum(tmp);
|
|
|
|
if (ntg > N_SIMDWIDTH) {
|
|
|
|
if (sgitg == 0) {
|
|
|
|
buf[tiisg] = 0.0f;
|
|
|
|
}
|
|
|
|
|
|
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
|
|
|
|
|
|
if (tiisg == 0) {
|
|
|
|
buf[sgitg] = tmp;
|
|
|
|
}
|
|
|
|
|
|
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
|
|
|
|
|
|
tmp = buf[tiisg];
|
|
|
|
tmp = simd_sum(tmp);
|
|
|
|
}
|
|
|
|
|
|
|
|
const float mean = tmp / gs;
|
|
|
|
tmp = 0.0f;
|
|
|
|
|
|
|
|
for (int j = start; j < end; j += ntg) {
|
|
|
|
float xi = src0[j] - mean;
|
|
|
|
dst[j] = xi;
|
|
|
|
tmp += xi * xi;
|
|
|
|
}
|
|
|
|
|
|
|
|
tmp = simd_sum(tmp);
|
|
|
|
if (ntg > N_SIMDWIDTH) {
|
|
|
|
if (sgitg == 0) {
|
|
|
|
buf[tiisg] = 0.0f;
|
|
|
|
}
|
|
|
|
|
|
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
|
|
|
|
|
|
if (tiisg == 0) {
|
|
|
|
buf[sgitg] = tmp;
|
|
|
|
}
|
|
|
|
|
|
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
|
|
|
|
|
|
tmp = buf[tiisg];
|
|
|
|
tmp = simd_sum(tmp);
|
|
|
|
}
|
|
|
|
|
|
|
|
const float variance = tmp / gs;
|
|
|
|
const float scale = 1.0f/sqrt(variance + eps);
|
|
|
|
for (int j = start; j < end; j += ntg) {
|
|
|
|
dst[j] *= scale;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-07-25 12:48:29 +02:00
|
|
|
// function for calculate inner product between half a q4_0 block and 16 floats (yl), sumy is SUM(yl[i])
|
|
|
|
// il indicates where the q4 quants begin (0 or QK4_0/4)
|
|
|
|
// we assume that the yl's have been multiplied with the appropriate scale factor
|
|
|
|
// that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
|
|
|
|
inline float block_q_n_dot_y(device const block_q4_0 * qb_curr, float sumy, thread float * yl, int il) {
|
2023-07-20 12:32:22 +02:00
|
|
|
float d = qb_curr->d;
|
2023-10-18 14:21:48 +02:00
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
float acc[4] = { 0.0f, 0.0f, 0.0f, 0.0f };
|
2023-10-18 14:21:48 +02:00
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
device const uint16_t * qs = ((device const uint16_t *) qb_curr + 1 + il/2);
|
2023-10-18 14:21:48 +02:00
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
for (int i = 0; i < 8; i += 2) {
|
|
|
|
acc[0] += yl[i + 0] * (qs[i / 2] & 0x000F);
|
|
|
|
acc[1] += yl[i + 1] * (qs[i / 2] & 0x0F00);
|
|
|
|
acc[2] += yl[i + 8] * (qs[i / 2] & 0x00F0);
|
|
|
|
acc[3] += yl[i + 9] * (qs[i / 2] & 0xF000);
|
2023-07-20 12:32:22 +02:00
|
|
|
}
|
2024-10-25 21:26:15 +02:00
|
|
|
|
|
|
|
return d * (sumy * -8.f + acc[0] + acc[1] + acc[2] + acc[3]);
|
2023-07-20 12:32:22 +02:00
|
|
|
}
|
|
|
|
|
2023-07-25 12:48:29 +02:00
|
|
|
// function for calculate inner product between half a q4_1 block and 16 floats (yl), sumy is SUM(yl[i])
|
|
|
|
// il indicates where the q4 quants begin (0 or QK4_0/4)
|
|
|
|
// we assume that the yl's have been multiplied with the appropriate scale factor
|
|
|
|
// that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
|
|
|
|
inline float block_q_n_dot_y(device const block_q4_1 * qb_curr, float sumy, thread float * yl, int il) {
|
2023-07-20 12:32:22 +02:00
|
|
|
float d = qb_curr->d;
|
|
|
|
float m = qb_curr->m;
|
2023-10-18 14:21:48 +02:00
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
float acc[4] = { 0.0f, 0.0f, 0.0f, 0.0f };
|
2023-10-18 14:21:48 +02:00
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
device const uint16_t * qs = ((device const uint16_t *) qb_curr + 2 + il/2);
|
2023-10-18 14:21:48 +02:00
|
|
|
|
2023-07-25 12:48:29 +02:00
|
|
|
for (int i = 0; i < 8; i+=2) {
|
2024-10-25 21:26:15 +02:00
|
|
|
acc[0] += yl[i + 0] * (qs[i / 2] & 0x000F);
|
|
|
|
acc[1] += yl[i + 1] * (qs[i / 2] & 0x0F00);
|
|
|
|
acc[2] += yl[i + 8] * (qs[i / 2] & 0x00F0);
|
|
|
|
acc[3] += yl[i + 9] * (qs[i / 2] & 0xF000);
|
2023-07-20 12:32:22 +02:00
|
|
|
}
|
2024-10-25 21:26:15 +02:00
|
|
|
|
|
|
|
return d * (acc[0] + acc[1] + acc[2] + acc[3]) + sumy * m;
|
2023-06-04 22:34:30 +02:00
|
|
|
}
|
|
|
|
|
2023-10-18 14:21:48 +02:00
|
|
|
// function for calculate inner product between half a q5_0 block and 16 floats (yl), sumy is SUM(yl[i])
|
|
|
|
// il indicates where the q5 quants begin (0 or QK5_0/4)
|
|
|
|
// we assume that the yl's have been multiplied with the appropriate scale factor
|
|
|
|
// that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
|
|
|
|
inline float block_q_n_dot_y(device const block_q5_0 * qb_curr, float sumy, thread float * yl, int il) {
|
|
|
|
float d = qb_curr->d;
|
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
float acc[4] = { 0.0f, 0.0f, 0.0f, 0.0f };
|
2023-10-18 14:21:48 +02:00
|
|
|
|
|
|
|
device const uint16_t * qs = ((device const uint16_t *)qb_curr + 3 + il/2);
|
|
|
|
const uint32_t qh = *((device const uint32_t *)qb_curr->qh);
|
|
|
|
|
|
|
|
for (int i = 0; i < 8; i+=2) {
|
2024-10-25 21:26:15 +02:00
|
|
|
acc[0] += yl[i + 0] * ((qs[i / 2] & 0x000F) | ((qh >> (i+0+il ) << 4 ) & 0x00010));
|
|
|
|
acc[1] += yl[i + 1] * ((qs[i / 2] & 0x0F00) | ((qh >> (i+1+il ) << 12) & 0x01000));
|
|
|
|
acc[2] += yl[i + 8] * ((qs[i / 2] & 0x00F0) | ((qh >> (i+0+il+QK5_0/2) << 8 ) & 0x00100));
|
|
|
|
acc[3] += yl[i + 9] * ((qs[i / 2] & 0xF000) | ((qh >> (i+1+il+QK5_0/2) << 16) & 0x10000));
|
2023-10-18 14:21:48 +02:00
|
|
|
}
|
2024-10-25 21:26:15 +02:00
|
|
|
|
|
|
|
return d * (sumy * -16.f + acc[0] + acc[1] + acc[2] + acc[3]);
|
2023-10-18 14:21:48 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
// function for calculate inner product between half a q5_1 block and 16 floats (yl), sumy is SUM(yl[i])
|
|
|
|
// il indicates where the q5 quants begin (0 or QK5_1/4)
|
|
|
|
// we assume that the yl's have been multiplied with the appropriate scale factor
|
|
|
|
// that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
|
|
|
|
inline float block_q_n_dot_y(device const block_q5_1 * qb_curr, float sumy, thread float * yl, int il) {
|
|
|
|
float d = qb_curr->d;
|
|
|
|
float m = qb_curr->m;
|
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
float acc[4] = { 0.0f, 0.0f, 0.0f, 0.0f };
|
2023-10-18 14:21:48 +02:00
|
|
|
|
|
|
|
device const uint16_t * qs = ((device const uint16_t *)qb_curr + 4 + il/2);
|
|
|
|
const uint32_t qh = *((device const uint32_t *)qb_curr->qh);
|
|
|
|
|
|
|
|
for (int i = 0; i < 8; i+=2) {
|
2024-10-25 21:26:15 +02:00
|
|
|
acc[0] += yl[i + 0] * ((qs[i / 2] & 0x000F) | ((qh >> (i+0+il ) << 4 ) & 0x00010));
|
|
|
|
acc[1] += yl[i + 1] * ((qs[i / 2] & 0x0F00) | ((qh >> (i+1+il ) << 12) & 0x01000));
|
|
|
|
acc[2] += yl[i + 8] * ((qs[i / 2] & 0x00F0) | ((qh >> (i+0+il+QK5_0/2) << 8 ) & 0x00100));
|
|
|
|
acc[3] += yl[i + 9] * ((qs[i / 2] & 0xF000) | ((qh >> (i+1+il+QK5_0/2) << 16) & 0x10000));
|
2023-10-18 14:21:48 +02:00
|
|
|
}
|
2024-10-25 21:26:15 +02:00
|
|
|
|
|
|
|
return d * (acc[0] + acc[1] + acc[2] + acc[3]) + sumy * m;
|
2023-10-18 14:21:48 +02:00
|
|
|
}
|
|
|
|
|
2023-07-12 22:10:55 +02:00
|
|
|
// putting them in the kernel cause a significant performance penalty
|
2023-10-08 09:01:53 +02:00
|
|
|
#define N_DST 4 // each SIMD group works on 4 rows
|
|
|
|
#define N_SIMDGROUP 2 // number of SIMD groups in a thread group
|
2023-07-25 12:48:29 +02:00
|
|
|
//Note: This is a template, but strictly speaking it only applies to
|
|
|
|
// quantizations where the block size is 32. It also does not
|
2024-01-02 20:07:47 +01:00
|
|
|
// guard against the number of rows not being divisible by
|
2023-07-25 12:48:29 +02:00
|
|
|
// N_DST, so this is another explicit assumption of the implementation.
|
|
|
|
template<typename block_q_type, int nr, int nsg, int nw>
|
2023-12-13 13:04:25 +01:00
|
|
|
void mul_vec_q_n_f32_impl(
|
2023-12-07 21:26:54 +01:00
|
|
|
device const void * src0,
|
|
|
|
device const float * src1,
|
|
|
|
device float * dst,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne00,
|
|
|
|
int64_t ne01,
|
|
|
|
int64_t ne02,
|
2024-10-25 21:26:15 +02:00
|
|
|
uint64_t nb01,
|
|
|
|
uint64_t nb02,
|
|
|
|
uint64_t nb03,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne10,
|
|
|
|
int64_t ne12,
|
2024-10-25 21:26:15 +02:00
|
|
|
uint64_t nb11,
|
|
|
|
uint64_t nb12,
|
|
|
|
uint64_t nb13,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne0,
|
|
|
|
int64_t ne1,
|
|
|
|
uint r2,
|
|
|
|
uint r3,
|
|
|
|
threadgroup int8_t * shared_values,
|
2024-10-25 21:26:15 +02:00
|
|
|
uint3 tgpig,
|
|
|
|
uint tiisg,
|
|
|
|
uint sgitg) {
|
2023-06-04 22:34:30 +02:00
|
|
|
const int nb = ne00/QK4_0;
|
2023-10-08 09:01:53 +02:00
|
|
|
|
2023-07-12 22:10:55 +02:00
|
|
|
const int r0 = tgpig.x;
|
|
|
|
const int r1 = tgpig.y;
|
2023-08-16 22:07:04 +02:00
|
|
|
const int im = tgpig.z;
|
2023-10-08 09:01:53 +02:00
|
|
|
|
2023-07-25 12:48:29 +02:00
|
|
|
const int first_row = (r0 * nsg + sgitg) * nr;
|
2023-10-08 09:01:53 +02:00
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
const uint i12 = im%ne12;
|
|
|
|
const uint i13 = im/ne12;
|
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
//const uint offset0 = first_row*nb01 + (i12/r2)*nb02 + (i13/r3)*nb03;
|
|
|
|
const uint offset1 = r1*nb11 + (i12 )*nb12 + (i13 )*nb13;
|
2023-10-08 09:01:53 +02:00
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
//device const block_q_type * x = (device const block_q_type *) ((device char *) src0 + offset0);
|
|
|
|
device const float * y = (device const float *) ((device char *) src1 + offset1);
|
|
|
|
|
|
|
|
// pointers to src0 rows
|
|
|
|
device const block_q_type * ax[nr];
|
|
|
|
for (int row = 0; row < nr; ++row) {
|
|
|
|
const uint offset0 = (first_row + row)*nb01 + (i12/r2)*nb02 + (i13/r3)*nb03;
|
|
|
|
|
|
|
|
ax[row] = (device const block_q_type *) ((device char *) src0 + offset0);
|
|
|
|
}
|
2023-07-12 22:10:55 +02:00
|
|
|
|
2023-10-08 09:01:53 +02:00
|
|
|
float yl[16]; // src1 vector cache
|
|
|
|
float sumf[nr] = {0.f};
|
|
|
|
|
|
|
|
const int ix = (tiisg/2);
|
|
|
|
const int il = (tiisg%2)*8;
|
2023-06-04 22:34:30 +02:00
|
|
|
|
2023-07-25 12:48:29 +02:00
|
|
|
device const float * yb = y + ix * QK4_0 + il;
|
2023-06-04 22:34:30 +02:00
|
|
|
|
2023-07-25 12:48:29 +02:00
|
|
|
// each thread in a SIMD group deals with half a block.
|
|
|
|
for (int ib = ix; ib < nb; ib += nw/2) {
|
2024-10-25 21:26:15 +02:00
|
|
|
float sumy[2] = { 0.f, 0.f };
|
|
|
|
|
|
|
|
#pragma unroll
|
2023-07-25 12:48:29 +02:00
|
|
|
for (int i = 0; i < 8; i += 2) {
|
2024-10-25 21:26:15 +02:00
|
|
|
sumy[0] += yb[i + 0] + yb[i + 1];
|
|
|
|
yl[i + 0] = yb[i + 0];
|
|
|
|
yl[i + 1] = yb[i + 1]/256.f;
|
2023-10-08 09:01:53 +02:00
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
sumy[1] += yb[i + 16] + yb[i + 17];
|
|
|
|
yl[i + 8] = yb[i + 16]/16.f;
|
|
|
|
yl[i + 9] = yb[i + 17]/4096.f;
|
2023-07-12 22:10:55 +02:00
|
|
|
}
|
2023-07-14 11:46:21 +02:00
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
#pragma unroll
|
2023-07-25 12:48:29 +02:00
|
|
|
for (int row = 0; row < nr; row++) {
|
2024-10-25 21:26:15 +02:00
|
|
|
sumf[row] += block_q_n_dot_y(ax[row] + ib, sumy[0] + sumy[1], yl, il);
|
2023-07-20 12:32:22 +02:00
|
|
|
}
|
2023-07-25 12:48:29 +02:00
|
|
|
|
|
|
|
yb += QK4_0 * 16;
|
2023-07-20 12:32:22 +02:00
|
|
|
}
|
2023-07-14 11:46:21 +02:00
|
|
|
|
2023-07-25 12:48:29 +02:00
|
|
|
for (int row = 0; row < nr; ++row) {
|
|
|
|
const float tot = simd_sum(sumf[row]);
|
|
|
|
if (tiisg == 0 && first_row + row < ne01) {
|
2023-10-08 09:01:53 +02:00
|
|
|
dst[im*ne0*ne1 + r1*ne0 + first_row + row] = tot;
|
2023-07-12 22:10:55 +02:00
|
|
|
}
|
2023-06-04 22:34:30 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-10-08 09:01:53 +02:00
|
|
|
kernel void kernel_mul_mv_q4_0_f32(
|
2023-06-10 10:28:11 +02:00
|
|
|
device const void * src0,
|
|
|
|
device const float * src1,
|
|
|
|
device float * dst,
|
|
|
|
constant int64_t & ne00,
|
2024-01-02 09:57:44 +01:00
|
|
|
constant int64_t & ne01,
|
|
|
|
constant int64_t & ne02,
|
|
|
|
constant uint64_t & nb00,
|
|
|
|
constant uint64_t & nb01,
|
|
|
|
constant uint64_t & nb02,
|
2024-10-25 21:26:15 +02:00
|
|
|
constant uint64_t & nb03,
|
2024-01-02 09:57:44 +01:00
|
|
|
constant int64_t & ne10,
|
|
|
|
constant int64_t & ne11,
|
|
|
|
constant int64_t & ne12,
|
|
|
|
constant uint64_t & nb10,
|
|
|
|
constant uint64_t & nb11,
|
|
|
|
constant uint64_t & nb12,
|
2024-10-25 21:26:15 +02:00
|
|
|
constant uint64_t & nb13,
|
2024-01-02 09:57:44 +01:00
|
|
|
constant int64_t & ne0,
|
|
|
|
constant int64_t & ne1,
|
|
|
|
constant uint & r2,
|
|
|
|
constant uint & r3,
|
2023-08-16 22:07:04 +02:00
|
|
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
2023-10-08 09:01:53 +02:00
|
|
|
uint tiisg[[thread_index_in_simdgroup]],
|
|
|
|
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
2024-10-25 21:26:15 +02:00
|
|
|
mul_vec_q_n_f32_impl<block_q4_0, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne01,ne02,nb01,nb02,nb03,ne10,ne12,nb11,nb12,nb13,ne0,ne1,r2,r3,nullptr,tgpig,tiisg,sgitg);
|
2023-07-20 12:32:22 +02:00
|
|
|
}
|
2023-06-10 10:28:11 +02:00
|
|
|
|
2023-10-08 09:01:53 +02:00
|
|
|
kernel void kernel_mul_mv_q4_1_f32(
|
2023-07-20 12:32:22 +02:00
|
|
|
device const void * src0,
|
|
|
|
device const float * src1,
|
|
|
|
device float * dst,
|
|
|
|
constant int64_t & ne00,
|
2024-01-02 09:57:44 +01:00
|
|
|
constant int64_t & ne01,
|
|
|
|
constant int64_t & ne02,
|
|
|
|
constant uint64_t & nb00,
|
|
|
|
constant uint64_t & nb01,
|
|
|
|
constant uint64_t & nb02,
|
2024-10-25 21:26:15 +02:00
|
|
|
constant uint64_t & nb03,
|
2024-01-02 09:57:44 +01:00
|
|
|
constant int64_t & ne10,
|
|
|
|
constant int64_t & ne11,
|
|
|
|
constant int64_t & ne12,
|
|
|
|
constant uint64_t & nb10,
|
|
|
|
constant uint64_t & nb11,
|
|
|
|
constant uint64_t & nb12,
|
2024-10-25 21:26:15 +02:00
|
|
|
constant uint64_t & nb13,
|
2024-01-02 09:57:44 +01:00
|
|
|
constant int64_t & ne0,
|
|
|
|
constant int64_t & ne1,
|
|
|
|
constant uint & r2,
|
|
|
|
constant uint & r3,
|
2023-08-16 22:07:04 +02:00
|
|
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
2023-07-20 12:32:22 +02:00
|
|
|
uint tiisg[[thread_index_in_simdgroup]],
|
|
|
|
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
2024-10-25 21:26:15 +02:00
|
|
|
mul_vec_q_n_f32_impl<block_q4_1, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne01,ne02,nb01,nb02,nb03,ne10,ne12,nb11,nb12,nb13,ne0,ne1,r2,r3,nullptr,tgpig,tiisg,sgitg);
|
2023-06-10 10:28:11 +02:00
|
|
|
}
|
|
|
|
|
2023-10-18 14:21:48 +02:00
|
|
|
kernel void kernel_mul_mv_q5_0_f32(
|
|
|
|
device const void * src0,
|
|
|
|
device const float * src1,
|
|
|
|
device float * dst,
|
|
|
|
constant int64_t & ne00,
|
2024-01-02 09:57:44 +01:00
|
|
|
constant int64_t & ne01,
|
|
|
|
constant int64_t & ne02,
|
|
|
|
constant uint64_t & nb00,
|
|
|
|
constant uint64_t & nb01,
|
|
|
|
constant uint64_t & nb02,
|
2024-10-25 21:26:15 +02:00
|
|
|
constant uint64_t & nb03,
|
2024-01-02 09:57:44 +01:00
|
|
|
constant int64_t & ne10,
|
|
|
|
constant int64_t & ne11,
|
|
|
|
constant int64_t & ne12,
|
|
|
|
constant uint64_t & nb10,
|
|
|
|
constant uint64_t & nb11,
|
|
|
|
constant uint64_t & nb12,
|
2024-10-25 21:26:15 +02:00
|
|
|
constant uint64_t & nb13,
|
2024-01-02 09:57:44 +01:00
|
|
|
constant int64_t & ne0,
|
|
|
|
constant int64_t & ne1,
|
|
|
|
constant uint & r2,
|
|
|
|
constant uint & r3,
|
2023-10-18 14:21:48 +02:00
|
|
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
|
|
|
uint tiisg[[thread_index_in_simdgroup]],
|
|
|
|
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
2024-10-25 21:26:15 +02:00
|
|
|
mul_vec_q_n_f32_impl<block_q5_0, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne01,ne02,nb01,nb02,nb03,ne10,ne12,nb11,nb12,nb13,ne0,ne1,r2,r3,nullptr,tgpig,tiisg,sgitg);
|
2023-10-18 14:21:48 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
kernel void kernel_mul_mv_q5_1_f32(
|
|
|
|
device const void * src0,
|
|
|
|
device const float * src1,
|
|
|
|
device float * dst,
|
|
|
|
constant int64_t & ne00,
|
2024-01-02 09:57:44 +01:00
|
|
|
constant int64_t & ne01,
|
|
|
|
constant int64_t & ne02,
|
|
|
|
constant uint64_t & nb00,
|
|
|
|
constant uint64_t & nb01,
|
|
|
|
constant uint64_t & nb02,
|
2024-10-25 21:26:15 +02:00
|
|
|
constant uint64_t & nb03,
|
2024-01-02 09:57:44 +01:00
|
|
|
constant int64_t & ne10,
|
|
|
|
constant int64_t & ne11,
|
|
|
|
constant int64_t & ne12,
|
|
|
|
constant uint64_t & nb10,
|
|
|
|
constant uint64_t & nb11,
|
|
|
|
constant uint64_t & nb12,
|
2024-10-25 21:26:15 +02:00
|
|
|
constant uint64_t & nb13,
|
2024-01-02 09:57:44 +01:00
|
|
|
constant int64_t & ne0,
|
|
|
|
constant int64_t & ne1,
|
|
|
|
constant uint & r2,
|
|
|
|
constant uint & r3,
|
2023-10-18 14:21:48 +02:00
|
|
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
|
|
|
uint tiisg[[thread_index_in_simdgroup]],
|
|
|
|
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
2024-10-25 21:26:15 +02:00
|
|
|
mul_vec_q_n_f32_impl<block_q5_1, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne01,ne02,nb01,nb02,nb03,ne10,ne12,nb11,nb12,nb13,ne0,ne1,r2,r3,nullptr,tgpig,tiisg,sgitg);
|
2023-10-18 14:21:48 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2023-09-03 10:06:22 +02:00
|
|
|
#define NB_Q8_0 8
|
|
|
|
|
2023-12-13 13:04:25 +01:00
|
|
|
void kernel_mul_mv_q8_0_f32_impl(
|
2023-08-24 15:19:57 +02:00
|
|
|
device const void * src0,
|
|
|
|
device const float * src1,
|
|
|
|
device float * dst,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne00,
|
|
|
|
int64_t ne01,
|
|
|
|
int64_t ne02,
|
2024-10-25 21:26:15 +02:00
|
|
|
uint64_t nb01,
|
|
|
|
uint64_t nb02,
|
|
|
|
uint64_t nb03,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne10,
|
|
|
|
int64_t ne12,
|
2024-10-25 21:26:15 +02:00
|
|
|
uint64_t nb11,
|
|
|
|
uint64_t nb12,
|
|
|
|
uint64_t nb13,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne0,
|
|
|
|
int64_t ne1,
|
|
|
|
uint r2,
|
|
|
|
uint r3,
|
|
|
|
threadgroup int8_t * shared_values,
|
|
|
|
uint3 tgpig,
|
|
|
|
uint tiisg,
|
|
|
|
uint sgitg) {
|
2023-08-24 15:19:57 +02:00
|
|
|
const int nr = N_DST;
|
|
|
|
const int nsg = N_SIMDGROUP;
|
|
|
|
const int nw = N_SIMDWIDTH;
|
|
|
|
|
|
|
|
const int nb = ne00/QK8_0;
|
|
|
|
const int r0 = tgpig.x;
|
|
|
|
const int r1 = tgpig.y;
|
|
|
|
const int im = tgpig.z;
|
2023-12-07 21:26:54 +01:00
|
|
|
|
2023-08-24 15:19:57 +02:00
|
|
|
const int first_row = (r0 * nsg + sgitg) * nr;
|
2023-12-07 21:26:54 +01:00
|
|
|
|
|
|
|
const uint i12 = im%ne12;
|
|
|
|
const uint i13 = im/ne12;
|
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
//const uint offset0 = first_row*nb01 + (i12/r2)*nb02 + (i13/r3)*nb03;
|
|
|
|
const uint offset1 = r1*nb11 + (i12 )*nb12 + (i13 )*nb13;
|
2023-12-07 21:26:54 +01:00
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
//device const block_q8_0 * x = (device const block_q8_0 *) ((device char *) src0 + offset0);
|
|
|
|
device const float * y = (device const float *) ((device char *) src1 + offset1);
|
|
|
|
|
|
|
|
// pointers to src0 rows
|
|
|
|
device const block_q8_0 * ax[nr];
|
|
|
|
for (int row = 0; row < nr; ++row) {
|
|
|
|
const uint offset0 = (first_row + row)*nb01 + (i12/r2)*nb02 + (i13/r3)*nb03;
|
|
|
|
|
|
|
|
ax[row] = (device const block_q8_0 *) ((device char *) src0 + offset0);
|
|
|
|
}
|
2023-08-24 15:19:57 +02:00
|
|
|
|
2023-09-03 10:06:22 +02:00
|
|
|
float yl[NB_Q8_0];
|
2023-08-24 15:19:57 +02:00
|
|
|
float sumf[nr]={0.f};
|
|
|
|
|
2023-09-03 10:06:22 +02:00
|
|
|
const int ix = tiisg/4;
|
|
|
|
const int il = tiisg%4;
|
2023-08-24 15:19:57 +02:00
|
|
|
|
2023-09-03 10:06:22 +02:00
|
|
|
device const float * yb = y + ix * QK8_0 + NB_Q8_0*il;
|
2023-08-24 15:19:57 +02:00
|
|
|
|
2023-09-03 10:06:22 +02:00
|
|
|
// each thread in a SIMD group deals with NB_Q8_0 quants at a time
|
|
|
|
for (int ib = ix; ib < nb; ib += nw/4) {
|
|
|
|
for (int i = 0; i < NB_Q8_0; ++i) {
|
2023-08-24 15:19:57 +02:00
|
|
|
yl[i] = yb[i];
|
|
|
|
}
|
|
|
|
|
|
|
|
for (int row = 0; row < nr; row++) {
|
2024-10-25 21:26:15 +02:00
|
|
|
device const int8_t * qs = ax[row][ib].qs + NB_Q8_0*il;
|
2023-08-24 15:19:57 +02:00
|
|
|
float sumq = 0.f;
|
2023-09-03 10:06:22 +02:00
|
|
|
for (int iq = 0; iq < NB_Q8_0; ++iq) {
|
2023-08-24 15:19:57 +02:00
|
|
|
sumq += qs[iq] * yl[iq];
|
|
|
|
}
|
2024-10-25 21:26:15 +02:00
|
|
|
sumf[row] += sumq*ax[row][ib].d;
|
2023-08-24 15:19:57 +02:00
|
|
|
}
|
|
|
|
|
2023-09-03 10:06:22 +02:00
|
|
|
yb += NB_Q8_0 * nw;
|
2023-08-24 15:19:57 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
for (int row = 0; row < nr; ++row) {
|
|
|
|
const float tot = simd_sum(sumf[row]);
|
|
|
|
if (tiisg == 0 && first_row + row < ne01) {
|
|
|
|
dst[r1*ne0 + im*ne0*ne1 + first_row + row] = tot;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-12-13 13:04:25 +01:00
|
|
|
[[host_name("kernel_mul_mv_q8_0_f32")]]
|
|
|
|
kernel void kernel_mul_mv_q8_0_f32(
|
|
|
|
device const void * src0,
|
|
|
|
device const float * src1,
|
|
|
|
device float * dst,
|
|
|
|
constant int64_t & ne00,
|
|
|
|
constant int64_t & ne01,
|
|
|
|
constant int64_t & ne02,
|
2024-01-02 09:57:44 +01:00
|
|
|
constant uint64_t & nb00,
|
|
|
|
constant uint64_t & nb01,
|
|
|
|
constant uint64_t & nb02,
|
2024-10-25 21:26:15 +02:00
|
|
|
constant uint64_t & nb03,
|
2023-12-13 13:04:25 +01:00
|
|
|
constant int64_t & ne10,
|
2024-01-02 09:57:44 +01:00
|
|
|
constant int64_t & ne11,
|
2023-12-13 13:04:25 +01:00
|
|
|
constant int64_t & ne12,
|
2024-01-02 09:57:44 +01:00
|
|
|
constant uint64_t & nb10,
|
|
|
|
constant uint64_t & nb11,
|
|
|
|
constant uint64_t & nb12,
|
2024-10-25 21:26:15 +02:00
|
|
|
constant uint64_t & nb13,
|
2023-12-13 13:04:25 +01:00
|
|
|
constant int64_t & ne0,
|
|
|
|
constant int64_t & ne1,
|
2024-01-02 09:57:44 +01:00
|
|
|
constant uint & r2,
|
|
|
|
constant uint & r3,
|
2023-12-13 13:04:25 +01:00
|
|
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
|
|
|
uint tiisg[[thread_index_in_simdgroup]],
|
|
|
|
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
2024-10-25 21:26:15 +02:00
|
|
|
kernel_mul_mv_q8_0_f32_impl(src0,src1,dst,ne00,ne01,ne02,nb01,nb02,nb03,ne10,ne12,nb11,nb12,nb13,ne0,ne1,r2,r3,nullptr,tgpig,tiisg,sgitg);
|
2023-12-13 13:04:25 +01:00
|
|
|
}
|
|
|
|
|
2024-07-13 17:32:33 +02:00
|
|
|
#define N_MV_T_T 4
|
2023-09-15 18:06:03 +02:00
|
|
|
|
2024-07-13 17:32:33 +02:00
|
|
|
template<typename T0, typename T04, typename T1, typename T14>
|
|
|
|
void kernel_mul_mv_impl(
|
2023-09-15 18:06:03 +02:00
|
|
|
device const char * src0,
|
|
|
|
device const char * src1,
|
|
|
|
device float * dst,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne00,
|
|
|
|
int64_t ne01,
|
|
|
|
int64_t ne02,
|
|
|
|
uint64_t nb00,
|
|
|
|
uint64_t nb01,
|
|
|
|
uint64_t nb02,
|
2024-10-25 21:26:15 +02:00
|
|
|
uint64_t nb03,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne10,
|
|
|
|
int64_t ne11,
|
|
|
|
int64_t ne12,
|
|
|
|
uint64_t nb10,
|
|
|
|
uint64_t nb11,
|
|
|
|
uint64_t nb12,
|
2024-10-25 21:26:15 +02:00
|
|
|
uint64_t nb13,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne0,
|
|
|
|
int64_t ne1,
|
2024-07-13 17:32:33 +02:00
|
|
|
uint r2,
|
|
|
|
uint r3,
|
|
|
|
uint3 tgpig,
|
|
|
|
uint tiisg) {
|
2023-09-15 18:06:03 +02:00
|
|
|
const int64_t r0 = tgpig.x;
|
2024-07-13 17:32:33 +02:00
|
|
|
const int64_t rb = tgpig.y*N_MV_T_T;
|
2023-09-15 18:06:03 +02:00
|
|
|
const int64_t im = tgpig.z;
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
const uint i12 = im%ne12;
|
|
|
|
const uint i13 = im/ne12;
|
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
const uint offset0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb03;
|
2023-12-07 21:26:54 +01:00
|
|
|
|
2024-07-13 17:32:33 +02:00
|
|
|
device const T0 * x = (device const T0 *) (src0 + offset0);
|
2023-09-15 18:06:03 +02:00
|
|
|
|
|
|
|
if (ne00 < 128) {
|
2024-07-13 17:32:33 +02:00
|
|
|
for (int row = 0; row < N_MV_T_T; ++row) {
|
2023-09-15 18:06:03 +02:00
|
|
|
int r1 = rb + row;
|
|
|
|
if (r1 >= ne11) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
const uint offset1 = r1*nb11 + (i12 )*nb12 + (i13 )*nb13;
|
|
|
|
|
|
|
|
device const T1 * y = (device const T1 *) (src1 + offset1);
|
2023-09-15 18:06:03 +02:00
|
|
|
|
|
|
|
float sumf = 0;
|
|
|
|
for (int i = tiisg; i < ne00; i += 32) {
|
2024-07-13 17:32:33 +02:00
|
|
|
sumf += (T0) x[i] * (T1) y[i];
|
2023-09-15 18:06:03 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
float all_sum = simd_sum(sumf);
|
|
|
|
if (tiisg == 0) {
|
|
|
|
dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
2024-07-13 17:32:33 +02:00
|
|
|
device const T04 * x4 = (device const T04 *) x;
|
|
|
|
for (int row = 0; row < N_MV_T_T; ++row) {
|
2023-09-15 18:06:03 +02:00
|
|
|
int r1 = rb + row;
|
|
|
|
if (r1 >= ne11) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
const uint offset1 = r1*nb11 + (i12 )*nb12 + (i13 )*nb13;
|
|
|
|
|
|
|
|
device const T1 * y = (device const T1 *) (src1 + offset1);
|
2024-07-13 17:32:33 +02:00
|
|
|
device const T14 * y4 = (device const T14 *) y;
|
2023-09-15 18:06:03 +02:00
|
|
|
|
|
|
|
float sumf = 0;
|
|
|
|
for (int i = tiisg; i < ne00/4; i += 32) {
|
2024-07-13 17:32:33 +02:00
|
|
|
for (int k = 0; k < 4; ++k) sumf += (float) (x4[i][k] * y4[i][k]);
|
2023-09-15 18:06:03 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
float all_sum = simd_sum(sumf);
|
|
|
|
if (tiisg == 0) {
|
2024-07-13 17:32:33 +02:00
|
|
|
for (int i = 4*(ne00/4); i < ne00; ++i) all_sum += (float) (x[i] * y[i]);
|
2023-09-15 18:06:03 +02:00
|
|
|
dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2024-07-13 17:32:33 +02:00
|
|
|
template<typename T0, typename T04, typename T1, typename T14>
|
|
|
|
kernel void kernel_mul_mv(
|
2023-12-13 13:04:25 +01:00
|
|
|
device const char * src0,
|
|
|
|
device const char * src1,
|
|
|
|
device float * dst,
|
|
|
|
constant int64_t & ne00,
|
|
|
|
constant int64_t & ne01,
|
|
|
|
constant int64_t & ne02,
|
|
|
|
constant uint64_t & nb00,
|
|
|
|
constant uint64_t & nb01,
|
|
|
|
constant uint64_t & nb02,
|
2024-10-25 21:26:15 +02:00
|
|
|
constant uint64_t & nb03,
|
2023-12-13 13:04:25 +01:00
|
|
|
constant int64_t & ne10,
|
|
|
|
constant int64_t & ne11,
|
|
|
|
constant int64_t & ne12,
|
|
|
|
constant uint64_t & nb10,
|
|
|
|
constant uint64_t & nb11,
|
|
|
|
constant uint64_t & nb12,
|
2024-10-25 21:26:15 +02:00
|
|
|
constant uint64_t & nb13,
|
2023-12-13 13:04:25 +01:00
|
|
|
constant int64_t & ne0,
|
|
|
|
constant int64_t & ne1,
|
2024-01-02 09:57:44 +01:00
|
|
|
constant uint & r2,
|
|
|
|
constant uint & r3,
|
2023-12-13 13:04:25 +01:00
|
|
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
|
|
|
uint tiisg[[thread_index_in_simdgroup]]) {
|
2024-07-13 17:32:33 +02:00
|
|
|
kernel_mul_mv_impl<T0, T04, T1, T14>(
|
|
|
|
src0,
|
|
|
|
src1,
|
|
|
|
dst,
|
|
|
|
ne00,
|
|
|
|
ne01,
|
|
|
|
ne02,
|
|
|
|
nb00,
|
|
|
|
nb01,
|
|
|
|
nb02,
|
2024-10-25 21:26:15 +02:00
|
|
|
nb03,
|
2024-07-13 17:32:33 +02:00
|
|
|
ne10,
|
|
|
|
ne11,
|
|
|
|
ne12,
|
|
|
|
nb10,
|
|
|
|
nb11,
|
|
|
|
nb12,
|
2024-10-25 21:26:15 +02:00
|
|
|
nb13,
|
2024-07-13 17:32:33 +02:00
|
|
|
ne0,
|
|
|
|
ne1,
|
|
|
|
r2,
|
|
|
|
r3,
|
|
|
|
tgpig,
|
|
|
|
tiisg);
|
2023-12-13 13:04:25 +01:00
|
|
|
}
|
|
|
|
|
2024-07-13 17:32:33 +02:00
|
|
|
typedef decltype(kernel_mul_mv<half, half4, half, half4>) mul_mv_t;
|
2023-11-13 15:55:52 +01:00
|
|
|
|
2024-07-13 17:32:33 +02:00
|
|
|
template [[host_name("kernel_mul_mv_f32_f32")]] kernel mul_mv_t kernel_mul_mv<float, float4, float, float4>;
|
|
|
|
template [[host_name("kernel_mul_mv_f16_f32")]] kernel mul_mv_t kernel_mul_mv<half, half4, float, float4>;
|
|
|
|
template [[host_name("kernel_mul_mv_f16_f16")]] kernel mul_mv_t kernel_mul_mv<half, half4, half, half4>;
|
2024-11-08 20:59:46 +01:00
|
|
|
#if defined(GGML_METAL_USE_BF16)
|
2024-11-06 18:53:51 +01:00
|
|
|
template [[host_name("kernel_mul_mv_bf16_f32")]] kernel mul_mv_t kernel_mul_mv<bfloat, bfloat4, float, float4>;
|
|
|
|
template [[host_name("kernel_mul_mv_bf16_bf16")]] kernel mul_mv_t kernel_mul_mv<bfloat, bfloat4, bfloat, bfloat4>;
|
|
|
|
#endif
|
2023-11-13 15:55:52 +01:00
|
|
|
|
2024-07-13 17:32:33 +02:00
|
|
|
template<typename T, typename T4>
|
|
|
|
kernel void kernel_mul_mv_1row(
|
2023-06-04 22:34:30 +02:00
|
|
|
device const char * src0,
|
|
|
|
device const char * src1,
|
|
|
|
device float * dst,
|
|
|
|
constant int64_t & ne00,
|
|
|
|
constant int64_t & ne01,
|
2023-08-01 09:43:12 +02:00
|
|
|
constant int64_t & ne02,
|
2023-06-04 22:34:30 +02:00
|
|
|
constant uint64_t & nb00,
|
|
|
|
constant uint64_t & nb01,
|
|
|
|
constant uint64_t & nb02,
|
2024-10-25 21:26:15 +02:00
|
|
|
constant uint64_t & nb03,
|
2023-06-04 22:34:30 +02:00
|
|
|
constant int64_t & ne10,
|
|
|
|
constant int64_t & ne11,
|
2023-08-01 09:43:12 +02:00
|
|
|
constant int64_t & ne12,
|
2023-06-04 22:34:30 +02:00
|
|
|
constant uint64_t & nb10,
|
|
|
|
constant uint64_t & nb11,
|
|
|
|
constant uint64_t & nb12,
|
2024-10-25 21:26:15 +02:00
|
|
|
constant uint64_t & nb13,
|
2023-06-04 22:34:30 +02:00
|
|
|
constant int64_t & ne0,
|
|
|
|
constant int64_t & ne1,
|
2023-12-13 13:04:25 +01:00
|
|
|
constant uint & r2,
|
|
|
|
constant uint & r3,
|
2023-06-04 22:34:30 +02:00
|
|
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
2023-10-08 09:01:53 +02:00
|
|
|
uint tiisg[[thread_index_in_simdgroup]]) {
|
2023-06-09 09:39:59 +02:00
|
|
|
|
2023-06-04 22:34:30 +02:00
|
|
|
const int64_t r0 = tgpig.x;
|
|
|
|
const int64_t r1 = tgpig.y;
|
|
|
|
const int64_t im = tgpig.z;
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
const uint i12 = im%ne12;
|
|
|
|
const uint i13 = im/ne12;
|
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
const uint offset0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb03;
|
|
|
|
const uint offset1 = r1*nb11 + (i12 )*nb12 + (i13 )*nb13;
|
2023-12-07 21:26:54 +01:00
|
|
|
|
2024-07-13 17:32:33 +02:00
|
|
|
device const T * x = (device const T *) (src0 + offset0);
|
2024-10-25 21:26:15 +02:00
|
|
|
device const float * y = (device const float *) (src1 + offset1);
|
2023-06-04 22:34:30 +02:00
|
|
|
|
2023-09-03 10:06:22 +02:00
|
|
|
float sumf = 0;
|
2023-09-03 12:23:33 +02:00
|
|
|
if (ne00 < 128) {
|
|
|
|
for (int i = tiisg; i < ne00; i += 32) {
|
|
|
|
sumf += (float) x[i] * (float) y[i];
|
|
|
|
}
|
|
|
|
float all_sum = simd_sum(sumf);
|
|
|
|
if (tiisg == 0) {
|
|
|
|
dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
|
|
|
|
}
|
|
|
|
} else {
|
2024-07-13 17:32:33 +02:00
|
|
|
device const T4 * x4 = (device const T4 *) x;
|
2023-09-03 12:23:33 +02:00
|
|
|
device const float4 * y4 = (device const float4 *) y;
|
2024-07-13 17:32:33 +02:00
|
|
|
|
2023-09-03 12:23:33 +02:00
|
|
|
for (int i = tiisg; i < ne00/4; i += 32) {
|
2024-07-13 17:32:33 +02:00
|
|
|
for (int k = 0; k < 4; ++k) sumf += (float) (x4[i][k] * y4[i][k]);
|
2023-09-03 12:23:33 +02:00
|
|
|
}
|
2024-07-13 17:32:33 +02:00
|
|
|
|
2023-09-03 12:23:33 +02:00
|
|
|
float all_sum = simd_sum(sumf);
|
2024-07-13 17:32:33 +02:00
|
|
|
|
2023-09-03 12:23:33 +02:00
|
|
|
if (tiisg == 0) {
|
2024-07-13 17:32:33 +02:00
|
|
|
for (int i = 4*(ne00/4); i < ne00; ++i) all_sum += (float) (x[i] * y[i]);
|
2023-09-03 12:23:33 +02:00
|
|
|
dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
|
|
|
|
}
|
2023-09-03 10:06:22 +02:00
|
|
|
}
|
2023-12-13 13:04:25 +01:00
|
|
|
}
|
2023-06-04 22:34:30 +02:00
|
|
|
|
2024-07-13 17:32:33 +02:00
|
|
|
typedef decltype(kernel_mul_mv_1row<half, half4>) mul_mv_1row_t;
|
2023-09-03 12:23:33 +02:00
|
|
|
|
2024-07-13 17:32:33 +02:00
|
|
|
template [[host_name("kernel_mul_mv_f16_f32_1row")]] kernel mul_mv_1row_t kernel_mul_mv_1row<half, half4>;
|
2024-11-08 20:59:46 +01:00
|
|
|
#if defined(GGML_METAL_USE_BF16)
|
2024-11-06 18:53:51 +01:00
|
|
|
template [[host_name("kernel_mul_mv_bf16_f32_1row")]] kernel mul_mv_1row_t kernel_mul_mv_1row<bfloat, bfloat4>;
|
|
|
|
#endif
|
2023-12-13 13:04:25 +01:00
|
|
|
|
2023-09-11 09:30:11 +02:00
|
|
|
// Assumes row size (ne00) is a multiple of 4
|
2024-07-13 17:32:33 +02:00
|
|
|
template<typename T, typename T4>
|
|
|
|
kernel void kernel_mul_mv_l4(
|
2023-09-11 09:30:11 +02:00
|
|
|
device const char * src0,
|
|
|
|
device const char * src1,
|
|
|
|
device float * dst,
|
|
|
|
constant int64_t & ne00,
|
|
|
|
constant int64_t & ne01,
|
|
|
|
constant int64_t & ne02,
|
|
|
|
constant uint64_t & nb00,
|
|
|
|
constant uint64_t & nb01,
|
|
|
|
constant uint64_t & nb02,
|
2024-10-25 21:26:15 +02:00
|
|
|
constant uint64_t & nb03,
|
2023-09-11 09:30:11 +02:00
|
|
|
constant int64_t & ne10,
|
|
|
|
constant int64_t & ne11,
|
|
|
|
constant int64_t & ne12,
|
|
|
|
constant uint64_t & nb10,
|
|
|
|
constant uint64_t & nb11,
|
|
|
|
constant uint64_t & nb12,
|
2024-10-25 21:26:15 +02:00
|
|
|
constant uint64_t & nb13,
|
2023-09-11 09:30:11 +02:00
|
|
|
constant int64_t & ne0,
|
|
|
|
constant int64_t & ne1,
|
2024-01-02 09:57:44 +01:00
|
|
|
constant uint & r2,
|
|
|
|
constant uint & r3,
|
2023-09-11 09:30:11 +02:00
|
|
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
|
|
|
uint tiisg[[thread_index_in_simdgroup]]) {
|
|
|
|
|
|
|
|
const int nrows = ne11;
|
|
|
|
const int64_t r0 = tgpig.x;
|
|
|
|
const int64_t im = tgpig.z;
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
const uint i12 = im%ne12;
|
|
|
|
const uint i13 = im/ne12;
|
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
const uint offset0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb03;
|
2023-12-07 21:26:54 +01:00
|
|
|
|
2024-07-13 17:32:33 +02:00
|
|
|
device const T4 * x4 = (device const T4 *) (src0 + offset0);
|
2023-09-11 09:30:11 +02:00
|
|
|
|
|
|
|
for (int r1 = 0; r1 < nrows; ++r1) {
|
2024-10-25 21:26:15 +02:00
|
|
|
const uint offset1 = r1*nb11 + (i12 )*nb12 + (i13 )*nb13;
|
|
|
|
|
|
|
|
device const float4 * y4 = (device const float4 *) (src1 + offset1);
|
2023-09-11 09:30:11 +02:00
|
|
|
|
|
|
|
float sumf = 0;
|
|
|
|
for (int i = tiisg; i < ne00/4; i += 32) {
|
2024-07-13 17:32:33 +02:00
|
|
|
for (int k = 0; k < 4; ++k) sumf += (float) (x4[i][k] * y4[i][k]);
|
2023-09-11 09:30:11 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
float all_sum = simd_sum(sumf);
|
|
|
|
if (tiisg == 0) {
|
|
|
|
dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2024-07-13 17:32:33 +02:00
|
|
|
typedef decltype(kernel_mul_mv_l4<half, half4>) mul_mv_l4_t;
|
|
|
|
|
|
|
|
template [[host_name("kernel_mul_mv_f16_f32_l4")]] kernel mul_mv_l4_t kernel_mul_mv_l4<half, half4>;
|
2024-11-08 20:59:46 +01:00
|
|
|
#if defined(GGML_METAL_USE_BF16)
|
2024-11-06 18:53:51 +01:00
|
|
|
template [[host_name("kernel_mul_mv_bf16_f32_l4")]] kernel mul_mv_l4_t kernel_mul_mv_l4<bfloat, bfloat4>;
|
|
|
|
#endif
|
2024-07-13 17:32:33 +02:00
|
|
|
|
2023-11-01 23:04:33 +01:00
|
|
|
static float rope_yarn_ramp(const float low, const float high, const int i0) {
|
|
|
|
const float y = (i0 / 2 - low) / max(0.001f, high - low);
|
|
|
|
return 1.0f - min(1.0f, max(0.0f, y));
|
|
|
|
}
|
|
|
|
|
|
|
|
// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
|
|
|
|
// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
|
|
|
|
static void rope_yarn(
|
|
|
|
float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
|
2024-06-05 10:29:20 +02:00
|
|
|
thread float * cos_theta, thread float * sin_theta) {
|
2023-11-01 23:04:33 +01:00
|
|
|
// Get n-d rotational scaling corrected for extrapolation
|
|
|
|
float theta_interp = freq_scale * theta_extrap;
|
|
|
|
float theta = theta_interp;
|
|
|
|
if (ext_factor != 0.0f) {
|
2023-11-02 07:33:37 +01:00
|
|
|
float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
|
2023-11-01 23:04:33 +01:00
|
|
|
theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
|
|
|
|
|
|
|
|
// Get n-d magnitude scaling corrected for interpolation
|
2023-11-02 07:33:37 +01:00
|
|
|
mscale *= 1.0f + 0.1f * log(1.0f / freq_scale);
|
2023-11-01 23:04:33 +01:00
|
|
|
}
|
2023-11-02 07:33:37 +01:00
|
|
|
*cos_theta = cos(theta) * mscale;
|
|
|
|
*sin_theta = sin(theta) * mscale;
|
2023-11-01 23:04:33 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
// Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
|
|
|
|
// `corr_fac(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
|
2024-06-05 10:29:20 +02:00
|
|
|
static float rope_yarn_corr_factor(int n_dims, int n_ctx_orig, float n_rot, float base) {
|
|
|
|
return n_dims * log(n_ctx_orig / (n_rot * 2 * M_PI_F)) / (2 * log(base));
|
2023-11-01 23:04:33 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
static void rope_yarn_corr_dims(
|
2024-06-05 10:29:20 +02:00
|
|
|
int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]
|
2023-11-01 23:04:33 +01:00
|
|
|
) {
|
|
|
|
// start and end correction dims
|
2024-06-05 10:29:20 +02:00
|
|
|
dims[0] = max(0.0f, floor(rope_yarn_corr_factor(n_dims, n_ctx_orig, beta_fast, freq_base)));
|
|
|
|
dims[1] = min(n_dims - 1.0f, ceil(rope_yarn_corr_factor(n_dims, n_ctx_orig, beta_slow, freq_base)));
|
2023-11-01 23:04:33 +01:00
|
|
|
}
|
|
|
|
|
2024-06-05 10:29:20 +02:00
|
|
|
template<typename T>
|
|
|
|
kernel void kernel_rope_norm(
|
2023-09-28 18:04:36 +02:00
|
|
|
device const void * src0,
|
|
|
|
device const int32_t * src1,
|
2024-05-21 22:28:32 +02:00
|
|
|
device const float * src2,
|
2023-09-28 18:04:36 +02:00
|
|
|
device float * dst,
|
|
|
|
constant int64_t & ne00,
|
|
|
|
constant int64_t & ne01,
|
|
|
|
constant int64_t & ne02,
|
|
|
|
constant int64_t & ne03,
|
|
|
|
constant uint64_t & nb00,
|
|
|
|
constant uint64_t & nb01,
|
|
|
|
constant uint64_t & nb02,
|
|
|
|
constant uint64_t & nb03,
|
|
|
|
constant int64_t & ne0,
|
|
|
|
constant int64_t & ne1,
|
|
|
|
constant int64_t & ne2,
|
|
|
|
constant int64_t & ne3,
|
|
|
|
constant uint64_t & nb0,
|
|
|
|
constant uint64_t & nb1,
|
|
|
|
constant uint64_t & nb2,
|
|
|
|
constant uint64_t & nb3,
|
|
|
|
constant int & n_past,
|
|
|
|
constant int & n_dims,
|
2024-06-05 10:29:20 +02:00
|
|
|
constant int & n_ctx_orig,
|
2023-09-28 18:04:36 +02:00
|
|
|
constant float & freq_base,
|
|
|
|
constant float & freq_scale,
|
2023-11-02 07:33:37 +01:00
|
|
|
constant float & ext_factor,
|
|
|
|
constant float & attn_factor,
|
|
|
|
constant float & beta_fast,
|
|
|
|
constant float & beta_slow,
|
2023-09-28 18:04:36 +02:00
|
|
|
uint tiitg[[thread_index_in_threadgroup]],
|
|
|
|
uint3 tptg[[threads_per_threadgroup]],
|
2024-06-05 10:29:20 +02:00
|
|
|
uint3 tgpig[[threadgroup_position_in_grid]]) {
|
|
|
|
const int64_t i3 = tgpig[2];
|
|
|
|
const int64_t i2 = tgpig[1];
|
|
|
|
const int64_t i1 = tgpig[0];
|
|
|
|
|
|
|
|
float corr_dims[2];
|
|
|
|
rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
|
|
|
|
|
|
|
|
device const int32_t * pos = src1;
|
|
|
|
|
|
|
|
const float theta_base = (float) pos[i2];
|
|
|
|
const float inv_ndims = -1.f/n_dims;
|
|
|
|
|
|
|
|
float cos_theta;
|
|
|
|
float sin_theta;
|
|
|
|
|
|
|
|
for (int64_t i0 = 2*tiitg; i0 < ne0; i0 += 2*tptg.x) {
|
|
|
|
if (i0 < n_dims) {
|
|
|
|
const int64_t ic = i0/2;
|
|
|
|
|
|
|
|
const float theta = theta_base * pow(freq_base, inv_ndims*i0);
|
|
|
|
|
|
|
|
const float freq_factor = src2 != src0 ? src2[ic] : 1.0f;
|
|
|
|
|
|
|
|
rope_yarn(theta/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
|
|
|
|
|
|
|
|
device const T * const src = (device T *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
|
|
|
|
device T * dst_data = (device T *)((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
|
|
|
|
|
|
|
const float x0 = src[0];
|
|
|
|
const float x1 = src[1];
|
|
|
|
|
|
|
|
dst_data[0] = x0*cos_theta - x1*sin_theta;
|
|
|
|
dst_data[1] = x0*sin_theta + x1*cos_theta;
|
|
|
|
} else {
|
|
|
|
device const T * const src = (device T *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
|
|
|
|
device T * dst_data = (device T *)((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
|
|
|
|
|
|
|
dst_data[0] = src[0];
|
|
|
|
dst_data[1] = src[1];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2023-09-28 18:04:36 +02:00
|
|
|
|
|
|
|
template<typename T>
|
2024-06-05 10:29:20 +02:00
|
|
|
kernel void kernel_rope_neox(
|
2023-09-28 18:04:36 +02:00
|
|
|
device const void * src0,
|
|
|
|
device const int32_t * src1,
|
2024-05-21 22:28:32 +02:00
|
|
|
device const float * src2,
|
2023-09-28 18:04:36 +02:00
|
|
|
device float * dst,
|
|
|
|
constant int64_t & ne00,
|
|
|
|
constant int64_t & ne01,
|
|
|
|
constant int64_t & ne02,
|
|
|
|
constant int64_t & ne03,
|
|
|
|
constant uint64_t & nb00,
|
|
|
|
constant uint64_t & nb01,
|
|
|
|
constant uint64_t & nb02,
|
|
|
|
constant uint64_t & nb03,
|
|
|
|
constant int64_t & ne0,
|
|
|
|
constant int64_t & ne1,
|
|
|
|
constant int64_t & ne2,
|
|
|
|
constant int64_t & ne3,
|
|
|
|
constant uint64_t & nb0,
|
|
|
|
constant uint64_t & nb1,
|
|
|
|
constant uint64_t & nb2,
|
|
|
|
constant uint64_t & nb3,
|
|
|
|
constant int & n_past,
|
|
|
|
constant int & n_dims,
|
2024-06-05 10:29:20 +02:00
|
|
|
constant int & n_ctx_orig,
|
2023-09-28 18:04:36 +02:00
|
|
|
constant float & freq_base,
|
|
|
|
constant float & freq_scale,
|
2023-11-01 23:04:33 +01:00
|
|
|
constant float & ext_factor,
|
|
|
|
constant float & attn_factor,
|
|
|
|
constant float & beta_fast,
|
|
|
|
constant float & beta_slow,
|
2023-09-07 15:45:01 +02:00
|
|
|
uint tiitg[[thread_index_in_threadgroup]],
|
|
|
|
uint3 tptg[[threads_per_threadgroup]],
|
|
|
|
uint3 tgpig[[threadgroup_position_in_grid]]) {
|
|
|
|
const int64_t i3 = tgpig[2];
|
|
|
|
const int64_t i2 = tgpig[1];
|
|
|
|
const int64_t i1 = tgpig[0];
|
2023-06-04 22:34:30 +02:00
|
|
|
|
2023-11-01 23:04:33 +01:00
|
|
|
float corr_dims[2];
|
2024-06-05 10:29:20 +02:00
|
|
|
rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
|
2023-11-01 23:04:33 +01:00
|
|
|
|
2023-09-28 18:04:36 +02:00
|
|
|
device const int32_t * pos = src1;
|
|
|
|
|
2024-06-05 10:29:20 +02:00
|
|
|
const float theta_base = (float) pos[i2];
|
2023-09-07 15:45:01 +02:00
|
|
|
const float inv_ndims = -1.f/n_dims;
|
2023-06-04 22:34:30 +02:00
|
|
|
|
2024-06-05 10:29:20 +02:00
|
|
|
float cos_theta;
|
|
|
|
float sin_theta;
|
2023-06-04 22:34:30 +02:00
|
|
|
|
2024-06-05 10:29:20 +02:00
|
|
|
for (int64_t i0 = 2*tiitg; i0 < ne0; i0 += 2*tptg.x) {
|
|
|
|
if (i0 < n_dims) {
|
|
|
|
const int64_t ic = i0/2;
|
2023-06-04 22:34:30 +02:00
|
|
|
|
2024-06-05 10:29:20 +02:00
|
|
|
const float theta = theta_base * pow(freq_base, inv_ndims*i0);
|
2023-11-01 23:04:33 +01:00
|
|
|
|
2024-06-05 10:29:20 +02:00
|
|
|
const float freq_factor = src2 != src0 ? src2[ic] : 1.0f;
|
2023-08-23 22:08:04 +02:00
|
|
|
|
2024-06-05 10:29:20 +02:00
|
|
|
rope_yarn(theta/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
|
2023-08-23 22:08:04 +02:00
|
|
|
|
2024-06-05 10:29:20 +02:00
|
|
|
device const T * const src = (device T *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
|
|
|
|
device T * dst_data = (device T *)((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
|
2023-08-23 22:08:04 +02:00
|
|
|
|
2024-06-05 10:29:20 +02:00
|
|
|
const float x0 = src[0];
|
|
|
|
const float x1 = src[n_dims/2];
|
2023-12-18 18:27:47 +01:00
|
|
|
|
2024-06-05 10:29:20 +02:00
|
|
|
dst_data[0] = x0*cos_theta - x1*sin_theta;
|
|
|
|
dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
|
|
|
|
} else {
|
|
|
|
device const T * const src = (device T *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
|
|
|
|
device T * dst_data = (device T *)((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
2023-12-18 18:27:47 +01:00
|
|
|
|
2024-06-05 10:29:20 +02:00
|
|
|
dst_data[0] = src[0];
|
|
|
|
dst_data[1] = src[1];
|
2023-08-23 22:08:04 +02:00
|
|
|
}
|
2023-06-04 22:34:30 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2024-06-05 10:29:20 +02:00
|
|
|
typedef decltype(kernel_rope_norm<float>) kernel_rope_norm_t;
|
|
|
|
typedef decltype(kernel_rope_neox<float>) kernel_rope_neox_t;
|
|
|
|
|
|
|
|
template [[host_name("kernel_rope_norm_f32")]] kernel kernel_rope_norm_t kernel_rope_norm<float>;
|
|
|
|
template [[host_name("kernel_rope_norm_f16")]] kernel kernel_rope_norm_t kernel_rope_norm<half>;
|
|
|
|
|
|
|
|
template [[host_name("kernel_rope_neox_f32")]] kernel kernel_rope_neox_t kernel_rope_neox<float>;
|
|
|
|
template [[host_name("kernel_rope_neox_f16")]] kernel kernel_rope_neox_t kernel_rope_neox<half>;
|
2023-09-28 18:04:36 +02:00
|
|
|
|
2024-01-31 14:35:41 +01:00
|
|
|
typedef void (im2col_t)(
|
2023-11-13 15:55:52 +01:00
|
|
|
device const float * x,
|
2024-01-31 14:35:41 +01:00
|
|
|
device char * dst,
|
|
|
|
constant int32_t & ofs0,
|
|
|
|
constant int32_t & ofs1,
|
|
|
|
constant int32_t & IW,
|
|
|
|
constant int32_t & IH,
|
|
|
|
constant int32_t & CHW,
|
|
|
|
constant int32_t & s0,
|
|
|
|
constant int32_t & s1,
|
|
|
|
constant int32_t & p0,
|
|
|
|
constant int32_t & p1,
|
|
|
|
constant int32_t & d0,
|
|
|
|
constant int32_t & d1,
|
|
|
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
|
|
|
uint3 tgpg[[threadgroups_per_grid]],
|
|
|
|
uint3 tpitg[[thread_position_in_threadgroup]],
|
|
|
|
uint3 ntg[[threads_per_threadgroup]]);
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
kernel void kernel_im2col(
|
|
|
|
device const float * x,
|
|
|
|
device char * dst,
|
2023-11-13 15:55:52 +01:00
|
|
|
constant int32_t & ofs0,
|
|
|
|
constant int32_t & ofs1,
|
|
|
|
constant int32_t & IW,
|
|
|
|
constant int32_t & IH,
|
|
|
|
constant int32_t & CHW,
|
|
|
|
constant int32_t & s0,
|
|
|
|
constant int32_t & s1,
|
|
|
|
constant int32_t & p0,
|
|
|
|
constant int32_t & p1,
|
|
|
|
constant int32_t & d0,
|
|
|
|
constant int32_t & d1,
|
|
|
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
|
|
|
uint3 tgpg[[threadgroups_per_grid]],
|
|
|
|
uint3 tpitg[[thread_position_in_threadgroup]],
|
|
|
|
uint3 ntg[[threads_per_threadgroup]]) {
|
|
|
|
const int32_t iiw = tgpig[2] * s0 + tpitg[2] * d0 - p0;
|
|
|
|
const int32_t iih = tgpig[1] * s1 + tpitg[1] * d1 - p1;
|
|
|
|
|
|
|
|
const int32_t offset_dst =
|
|
|
|
(tpitg[0] * tgpg[1] * tgpg[2] + tgpig[1] * tgpg[2] + tgpig[2]) * CHW +
|
|
|
|
(tgpig[0] * (ntg[1] * ntg[2]) + tpitg[1] * ntg[2] + tpitg[2]);
|
|
|
|
|
2024-01-31 14:35:41 +01:00
|
|
|
device T * pdst = (device T *) (dst);
|
|
|
|
|
2023-11-13 15:55:52 +01:00
|
|
|
if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
|
2024-01-31 14:35:41 +01:00
|
|
|
pdst[offset_dst] = 0.0f;
|
2023-11-13 15:55:52 +01:00
|
|
|
} else {
|
|
|
|
const int32_t offset_src = tpitg[0] * ofs0 + tgpig[0] * ofs1;
|
2024-01-31 14:35:41 +01:00
|
|
|
pdst[offset_dst] = x[offset_src + iih * IW + iiw];
|
2023-11-13 15:55:52 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2024-01-31 14:35:41 +01:00
|
|
|
template [[host_name("kernel_im2col_f32")]] kernel im2col_t kernel_im2col<float>;
|
|
|
|
template [[host_name("kernel_im2col_f16")]] kernel im2col_t kernel_im2col<half>;
|
|
|
|
|
2024-10-23 12:33:45 +02:00
|
|
|
typedef void (im2col_ext_t)(
|
|
|
|
device const float * x,
|
|
|
|
device char * dst,
|
|
|
|
constant int32_t & ofs0,
|
|
|
|
constant int32_t & ofs1,
|
|
|
|
constant int32_t & IW,
|
|
|
|
constant int32_t & IH,
|
|
|
|
constant int32_t & CHW,
|
|
|
|
constant int32_t & s0,
|
|
|
|
constant int32_t & s1,
|
|
|
|
constant int32_t & p0,
|
|
|
|
constant int32_t & p1,
|
|
|
|
constant int32_t & d0,
|
|
|
|
constant int32_t & d1,
|
|
|
|
constant int32_t & N,
|
|
|
|
constant int32_t & KH,
|
|
|
|
constant int32_t & KW,
|
|
|
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
|
|
|
uint3 tgpg[[threadgroups_per_grid]],
|
|
|
|
uint3 tpitg[[thread_position_in_threadgroup]],
|
|
|
|
uint3 ntg[[threads_per_threadgroup]]);
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
kernel void kernel_im2col_ext(
|
|
|
|
device const float * x,
|
|
|
|
device char * dst,
|
|
|
|
constant int32_t & ofs0,
|
|
|
|
constant int32_t & ofs1,
|
|
|
|
constant int32_t & IW,
|
|
|
|
constant int32_t & IH,
|
|
|
|
constant int32_t & CHW,
|
|
|
|
constant int32_t & s0,
|
|
|
|
constant int32_t & s1,
|
|
|
|
constant int32_t & p0,
|
|
|
|
constant int32_t & p1,
|
|
|
|
constant int32_t & d0,
|
|
|
|
constant int32_t & d1,
|
|
|
|
constant int32_t & N,
|
|
|
|
constant int32_t & KH,
|
|
|
|
constant int32_t & KW,
|
|
|
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
|
|
|
uint3 tgpg[[threadgroups_per_grid]], // tgpg[0] = D x IC x KH x KW, CHW = IC x KH x KW
|
|
|
|
uint3 tpitg[[thread_position_in_threadgroup]],
|
|
|
|
uint3 ntg[[threads_per_threadgroup]]) { // [M, 1, 1]
|
|
|
|
const int32_t KHW = KH * KW; // KHW == ntg[1] * ntg[2], KW == ntg[2]
|
|
|
|
|
|
|
|
const int32_t d = tgpig[0] / CHW;
|
|
|
|
const int32_t chw = tgpig[0] % CHW;
|
|
|
|
const int32_t tgpig_0 = chw / KHW; // 0 ~ (IC - 1)
|
|
|
|
const int32_t HW = tgpig[0] % KHW;
|
|
|
|
|
|
|
|
const int32_t tpitg_0 = (d * ntg[0]) + tpitg[0];
|
|
|
|
if (tpitg_0 >= N) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
const int32_t tpitg_1 = HW / KW;
|
|
|
|
const int32_t tpitg_2 = HW % KW;
|
|
|
|
|
|
|
|
const int32_t iiw = tgpig[2] * s0 + tpitg_2 * d0 - p0;
|
|
|
|
const int32_t iih = tgpig[1] * s1 + tpitg_1 * d1 - p1;
|
|
|
|
|
|
|
|
const int32_t offset_dst =
|
|
|
|
(tpitg_0 * tgpg[1] * tgpg[2] + tgpig[1] * tgpg[2] + tgpig[2]) * CHW +
|
|
|
|
(tgpig_0 * KHW + tpitg_1 * KW + tpitg_2);
|
|
|
|
|
|
|
|
device T * pdst = (device T *) (dst);
|
|
|
|
|
|
|
|
if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
|
|
|
|
pdst[offset_dst] = 0.0f;
|
|
|
|
} else {
|
|
|
|
const int32_t offset_src = tpitg_0 * ofs0 + tgpig_0 * ofs1;
|
|
|
|
pdst[offset_dst] = x[offset_src + iih * IW + iiw];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
template [[host_name("kernel_im2col_ext_f32")]] kernel im2col_ext_t kernel_im2col_ext<float>;
|
|
|
|
template [[host_name("kernel_im2col_ext_f16")]] kernel im2col_ext_t kernel_im2col_ext<half>;
|
|
|
|
|
2023-12-13 20:54:54 +01:00
|
|
|
kernel void kernel_upscale_f32(
|
|
|
|
device const char * src0,
|
|
|
|
device char * dst,
|
|
|
|
constant int64_t & ne00,
|
|
|
|
constant int64_t & ne01,
|
|
|
|
constant int64_t & ne02,
|
|
|
|
constant int64_t & ne03,
|
|
|
|
constant uint64_t & nb00,
|
|
|
|
constant uint64_t & nb01,
|
|
|
|
constant uint64_t & nb02,
|
|
|
|
constant uint64_t & nb03,
|
|
|
|
constant int64_t & ne0,
|
|
|
|
constant int64_t & ne1,
|
|
|
|
constant int64_t & ne2,
|
|
|
|
constant int64_t & ne3,
|
|
|
|
constant uint64_t & nb0,
|
|
|
|
constant uint64_t & nb1,
|
|
|
|
constant uint64_t & nb2,
|
|
|
|
constant uint64_t & nb3,
|
2024-05-15 10:52:33 +02:00
|
|
|
constant float & sf0,
|
|
|
|
constant float & sf1,
|
|
|
|
constant float & sf2,
|
|
|
|
constant float & sf3,
|
2023-12-13 20:54:54 +01:00
|
|
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
|
|
|
uint3 tpitg[[thread_position_in_threadgroup]],
|
|
|
|
uint3 ntg[[threads_per_threadgroup]]) {
|
|
|
|
|
|
|
|
const int64_t i3 = tgpig.z;
|
|
|
|
const int64_t i2 = tgpig.y;
|
|
|
|
const int64_t i1 = tgpig.x;
|
|
|
|
|
2024-05-15 10:52:33 +02:00
|
|
|
const int64_t i03 = i3/sf3;
|
|
|
|
const int64_t i02 = i2/sf2;
|
|
|
|
const int64_t i01 = i1/sf1;
|
2023-12-13 20:54:54 +01:00
|
|
|
|
|
|
|
for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
|
2024-05-15 10:52:33 +02:00
|
|
|
const int64_t i00 = i0/sf0;
|
|
|
|
|
|
|
|
device const float * src0_ptr = (device const float *) (src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
|
|
|
|
device float * dst_ptr = (device float *) (dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
|
|
|
|
|
|
|
dst_ptr[0] = src0_ptr[0];
|
2023-12-13 20:54:54 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
kernel void kernel_pad_f32(
|
|
|
|
device const char * src0,
|
|
|
|
device char * dst,
|
|
|
|
constant int64_t & ne00,
|
|
|
|
constant int64_t & ne01,
|
|
|
|
constant int64_t & ne02,
|
|
|
|
constant int64_t & ne03,
|
|
|
|
constant uint64_t & nb00,
|
|
|
|
constant uint64_t & nb01,
|
|
|
|
constant uint64_t & nb02,
|
|
|
|
constant uint64_t & nb03,
|
|
|
|
constant int64_t & ne0,
|
|
|
|
constant int64_t & ne1,
|
|
|
|
constant int64_t & ne2,
|
|
|
|
constant int64_t & ne3,
|
|
|
|
constant uint64_t & nb0,
|
|
|
|
constant uint64_t & nb1,
|
|
|
|
constant uint64_t & nb2,
|
|
|
|
constant uint64_t & nb3,
|
|
|
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
|
|
|
uint3 tpitg[[thread_position_in_threadgroup]],
|
|
|
|
uint3 ntg[[threads_per_threadgroup]]) {
|
|
|
|
|
|
|
|
const int64_t i3 = tgpig.z;
|
|
|
|
const int64_t i2 = tgpig.y;
|
|
|
|
const int64_t i1 = tgpig.x;
|
|
|
|
|
|
|
|
const int64_t i03 = i3;
|
|
|
|
const int64_t i02 = i2;
|
|
|
|
const int64_t i01 = i1;
|
|
|
|
|
|
|
|
device const float * src0_ptr = (device const float *) (src0 + i03*nb03 + i02*nb02 + i01*nb01);
|
|
|
|
device float * dst_ptr = (device float *) (dst + i3*nb3 + i2*nb2 + i1*nb1);
|
|
|
|
|
|
|
|
if (i1 < ne01 && i2 < ne02 && i3 < ne03) {
|
|
|
|
for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
|
|
|
|
if (i0 < ne00) {
|
|
|
|
dst_ptr[i0] = src0_ptr[i0];
|
|
|
|
} else {
|
|
|
|
dst_ptr[i0] = 0.0f;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
|
|
|
|
dst_ptr[i0] = 0.0f;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2024-03-03 13:23:52 +01:00
|
|
|
kernel void kernel_arange_f32(
|
|
|
|
device char * dst,
|
|
|
|
constant int64_t & ne0,
|
|
|
|
constant float & start,
|
|
|
|
constant float & step,
|
|
|
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
|
|
|
uint3 tpitg[[thread_position_in_threadgroup]],
|
|
|
|
uint3 ntg[[threads_per_threadgroup]]) {
|
|
|
|
|
|
|
|
device float * dst_ptr = (device float *) dst;
|
|
|
|
|
|
|
|
for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
|
|
|
|
dst_ptr[i0] = start + step * i0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
kernel void kernel_timestep_embedding_f32(
|
|
|
|
device const char * src0,
|
|
|
|
device char * dst,
|
|
|
|
constant uint64_t & nb1,
|
|
|
|
constant int & dim,
|
|
|
|
constant int & max_period,
|
|
|
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
|
|
|
uint3 tpitg[[thread_position_in_threadgroup]],
|
|
|
|
uint3 ntg[[threads_per_threadgroup]]) {
|
|
|
|
|
|
|
|
int i = tgpig.x;
|
|
|
|
device float * embed_data = (device float *)(dst + i*nb1);
|
|
|
|
|
|
|
|
int half_ = dim / 2;
|
|
|
|
for (int j = tpitg.x; j < half_; j += ntg.x) {
|
|
|
|
float timestep = ((device float *)src0)[i];
|
|
|
|
float freq = (float)exp(-log((float)max_period) * j / half_);
|
|
|
|
float arg = timestep * freq;
|
|
|
|
embed_data[j ] = cos(arg);
|
|
|
|
embed_data[j + half_] = sin(arg);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (dim % 2 != 0 && tpitg.x == 0) {
|
|
|
|
embed_data[dim] = 0.f;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
// bitonic sort implementation following the CUDA kernels as reference
|
|
|
|
typedef void (argsort_t)(
|
2024-04-03 15:07:05 +02:00
|
|
|
device const float * x,
|
|
|
|
device int32_t * dst,
|
|
|
|
constant int64_t & ncols,
|
|
|
|
constant int64_t & ncols_pad,
|
|
|
|
threadgroup int32_t * shared_values [[threadgroup(0)]],
|
2023-12-07 21:26:54 +01:00
|
|
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
|
|
|
uint3 tpitg[[thread_position_in_threadgroup]]);
|
|
|
|
|
|
|
|
template<ggml_sort_order order>
|
|
|
|
kernel void kernel_argsort_f32_i32(
|
|
|
|
device const float * x,
|
|
|
|
device int32_t * dst,
|
|
|
|
constant int64_t & ncols,
|
2024-04-03 15:07:05 +02:00
|
|
|
constant int64_t & ncols_pad,
|
|
|
|
threadgroup int32_t * shared_values [[threadgroup(0)]],
|
2023-12-07 21:26:54 +01:00
|
|
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
|
|
|
uint3 tpitg[[thread_position_in_threadgroup]]) {
|
|
|
|
// bitonic sort
|
|
|
|
int col = tpitg[0];
|
|
|
|
int row = tgpig[1];
|
|
|
|
|
2024-04-03 15:07:05 +02:00
|
|
|
if (col >= ncols_pad) return;
|
2023-12-07 21:26:54 +01:00
|
|
|
|
2024-04-03 15:07:05 +02:00
|
|
|
device const float * x_row = x + row * ncols;
|
|
|
|
threadgroup int32_t * dst_row = shared_values;
|
2023-12-07 21:26:54 +01:00
|
|
|
|
|
|
|
// initialize indices
|
2024-04-03 15:07:05 +02:00
|
|
|
dst_row[col] = col;
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
|
|
|
2024-04-03 15:07:05 +02:00
|
|
|
for (int k = 2; k <= ncols_pad; k *= 2) {
|
2023-12-07 21:26:54 +01:00
|
|
|
for (int j = k / 2; j > 0; j /= 2) {
|
|
|
|
int ixj = col ^ j;
|
|
|
|
if (ixj > col) {
|
|
|
|
if ((col & k) == 0) {
|
2024-04-03 15:07:05 +02:00
|
|
|
if (dst_row[col] >= ncols ||
|
|
|
|
(dst_row[ixj] < ncols && (order == GGML_SORT_ORDER_ASC ?
|
|
|
|
x_row[dst_row[col]] > x_row[dst_row[ixj]] :
|
|
|
|
x_row[dst_row[col]] < x_row[dst_row[ixj]]))
|
|
|
|
) {
|
2023-12-07 21:26:54 +01:00
|
|
|
SWAP(dst_row[col], dst_row[ixj]);
|
|
|
|
}
|
|
|
|
} else {
|
2024-04-03 15:07:05 +02:00
|
|
|
if (dst_row[ixj] >= ncols ||
|
|
|
|
(dst_row[col] < ncols && (order == GGML_SORT_ORDER_ASC ?
|
|
|
|
x_row[dst_row[col]] < x_row[dst_row[ixj]] :
|
|
|
|
x_row[dst_row[col]] > x_row[dst_row[ixj]]))
|
|
|
|
) {
|
2023-12-07 21:26:54 +01:00
|
|
|
SWAP(dst_row[col], dst_row[ixj]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
|
|
}
|
|
|
|
}
|
2024-04-03 15:07:05 +02:00
|
|
|
|
|
|
|
// copy the result to dst without the padding
|
|
|
|
if (col < ncols) {
|
|
|
|
dst[row * ncols + col] = dst_row[col];
|
|
|
|
}
|
2023-12-07 21:26:54 +01:00
|
|
|
}
|
|
|
|
|
2024-04-03 15:07:05 +02:00
|
|
|
template [[host_name("kernel_argsort_f32_i32_asc")]] kernel argsort_t kernel_argsort_f32_i32<GGML_SORT_ORDER_ASC>;
|
|
|
|
template [[host_name("kernel_argsort_f32_i32_desc")]] kernel argsort_t kernel_argsort_f32_i32<GGML_SORT_ORDER_DESC>;
|
2023-12-07 21:26:54 +01:00
|
|
|
|
2023-12-13 20:54:54 +01:00
|
|
|
kernel void kernel_leaky_relu_f32(
|
|
|
|
device const float * src0,
|
|
|
|
device float * dst,
|
|
|
|
constant float & slope,
|
|
|
|
uint tpig[[thread_position_in_grid]]) {
|
|
|
|
dst[tpig] = src0[tpig] > 0.0f ? src0[tpig] : src0[tpig] * slope;
|
|
|
|
}
|
|
|
|
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
// ref: https://arxiv.org/pdf/2307.08691.pdf
|
2024-11-08 12:47:22 +01:00
|
|
|
template<
|
|
|
|
typename q_t, // query types in shared memory
|
|
|
|
typename q4_t,
|
|
|
|
typename q8x8_t,
|
|
|
|
typename k_t, // key types in shared memory
|
|
|
|
typename k4x4_t,
|
|
|
|
typename k8x8_t,
|
|
|
|
typename v_t, // value types in shared memory
|
|
|
|
typename v4x4_t,
|
|
|
|
typename v8x8_t,
|
|
|
|
typename qk_t, // Q*K types
|
|
|
|
typename qk8x8_t,
|
|
|
|
typename s_t, // soft-max types
|
|
|
|
typename s8x8_t,
|
|
|
|
typename o_t, // attention accumulation types
|
|
|
|
typename o4_t,
|
|
|
|
typename o8x8_t,
|
|
|
|
typename kd4x4_t, // key type in device memory
|
|
|
|
short nl_k,
|
|
|
|
void (*deq_k)(device const kd4x4_t *, short, thread k4x4_t &),
|
|
|
|
typename vd4x4_t, // key type in device memory
|
|
|
|
short nl_v,
|
|
|
|
void (*deq_v)(device const vd4x4_t *, short, thread v4x4_t &),
|
|
|
|
short D, // head size
|
|
|
|
short Q = 8, // queries per threadgroup
|
|
|
|
short KV = 8, // key/value processed per each simdgroup
|
|
|
|
short C = 32> // cache items per threadgroup
|
2024-11-06 09:24:23 +01:00
|
|
|
kernel void kernel_flash_attn_ext(
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
device const char * q,
|
|
|
|
device const char * k,
|
|
|
|
device const char * v,
|
|
|
|
device const char * mask,
|
|
|
|
device float * dst,
|
2024-11-08 12:47:22 +01:00
|
|
|
constant int32_t & ne01,
|
|
|
|
constant int32_t & ne02,
|
|
|
|
constant int32_t & ne03,
|
|
|
|
constant uint32_t & nb01,
|
|
|
|
constant uint32_t & nb02,
|
|
|
|
constant uint32_t & nb03,
|
|
|
|
constant int32_t & ne11,
|
|
|
|
constant int32_t & ne_12_2, // assume K and V are same shape
|
|
|
|
constant int32_t & ne_12_3,
|
|
|
|
constant uint32_t & nb_12_1,
|
|
|
|
constant uint32_t & nb_12_2,
|
|
|
|
constant uint32_t & nb_12_3,
|
|
|
|
constant uint32_t & nb31,
|
|
|
|
constant int32_t & ne1,
|
|
|
|
constant int32_t & ne2,
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
constant float & scale,
|
2024-05-11 09:32:41 +02:00
|
|
|
constant float & max_bias,
|
|
|
|
constant float & m0,
|
|
|
|
constant float & m1,
|
2024-11-08 12:47:22 +01:00
|
|
|
constant uint16_t & n_head_log2,
|
2024-08-26 11:08:59 +02:00
|
|
|
constant float & logit_softcap,
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
threadgroup half * shared [[threadgroup(0)]],
|
2024-11-08 12:47:22 +01:00
|
|
|
ushort3 tgpig[[threadgroup_position_in_grid]],
|
|
|
|
ushort3 ntg[[threads_per_threadgroup]],
|
|
|
|
ushort tiisg[[thread_index_in_simdgroup]],
|
|
|
|
ushort sgitg[[simdgroup_index_in_threadgroup]]) {
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
const short nsg = ntg.y; // number of simdgroups
|
|
|
|
|
2024-11-06 09:24:23 +01:00
|
|
|
const int iq3 = tgpig[2];
|
|
|
|
const int iq2 = tgpig[1];
|
|
|
|
const int iq1 = tgpig[0]*Q;
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
|
2024-11-06 09:24:23 +01:00
|
|
|
const short D4 = D/4;
|
|
|
|
const short D8 = D/8;
|
|
|
|
const short D16 = D/16;
|
|
|
|
const short NW = N_SIMDWIDTH;
|
2024-11-08 12:47:22 +01:00
|
|
|
const short SH = (2*C + Q); // shared memory per simdgroup (s_t == float)
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
|
2024-11-08 12:47:22 +01:00
|
|
|
const short TS = nsg*SH; // shared memory size per query in (s_t == float)
|
|
|
|
const short T = D + 2*TS; // shared memory size per query in (half)
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
|
2024-11-08 12:47:22 +01:00
|
|
|
threadgroup q_t * sq = (threadgroup q_t *) (shared + 0*D); // holds the query data
|
|
|
|
threadgroup q4_t * sq4 = (threadgroup q4_t *) (shared + 0*D); // same as above but in q4_t
|
|
|
|
threadgroup o_t * so = (threadgroup o_t *) (shared + 0*D); // reuse query data for accumulation
|
|
|
|
threadgroup o4_t * so4 = (threadgroup o4_t *) (shared + 0*D); // same as above but in o4_t
|
|
|
|
threadgroup s_t * ss = (threadgroup s_t *) (shared + 2*sgitg*SH + Q*D); // scratch buffer for attention, mask and diagonal matrix
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
|
2024-11-08 12:47:22 +01:00
|
|
|
threadgroup k_t * sk = (threadgroup k_t *) (shared + sgitg*(4*16*KV) + Q*T); // scratch buffer to load K in shared memory
|
|
|
|
threadgroup k4x4_t * sk4x4 = (threadgroup k4x4_t *) (shared + sgitg*(4*16*KV) + Q*T); // same as above but in k4x4_t
|
|
|
|
|
|
|
|
threadgroup v_t * sv = (threadgroup v_t *) (shared + sgitg*(4*16*KV) + Q*T); // scratch buffer to load V in shared memory
|
|
|
|
threadgroup v4x4_t * sv4x4 = (threadgroup v4x4_t *) (shared + sgitg*(4*16*KV) + Q*T); // same as above but in v4x4_t
|
2024-11-06 09:24:23 +01:00
|
|
|
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
// store the result for all queries in local memory in 8x8 matrices (the O matrix from the paper)
|
2024-11-08 12:47:22 +01:00
|
|
|
o8x8_t lo[D8];
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
|
|
|
|
// load heads from Q to shared memory
|
|
|
|
for (short j = sgitg; j < Q; j += nsg) {
|
|
|
|
device const float4 * q4 = (device const float4 *) ((device const char *) q + ((iq1 + j)*nb01 + iq2*nb02 + iq3*nb03));
|
|
|
|
|
|
|
|
for (short i = tiisg; i < D4; i += NW) {
|
|
|
|
if (iq1 + j < ne01) {
|
2024-11-08 12:47:22 +01:00
|
|
|
sq4[j*D4 + i] = (q4_t) q4[i];
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
} else {
|
2024-11-08 12:47:22 +01:00
|
|
|
sq4[j*D4 + i] = (q4_t) 0.0f;
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// zero out lo
|
|
|
|
for (short i = 0; i < D8; ++i) {
|
2024-11-08 12:47:22 +01:00
|
|
|
lo[i] = make_filled_simdgroup_matrix<o_t, 8>((o_t) 0.0f);
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
// zero out shared memory SH
|
|
|
|
for (short j = 0; j < Q; ++j) {
|
|
|
|
for (short i = tiisg; i < SH; i += NW) {
|
2024-11-08 12:47:22 +01:00
|
|
|
ss[j*TS + i] = 0.0f;
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
|
|
|
|
|
|
{
|
2024-11-08 12:47:22 +01:00
|
|
|
half S[Q] = { [0 ... Q-1] = 0.0f };
|
|
|
|
half M[Q] = { [0 ... Q-1] = -__FLT16_MAX__/2 };
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
|
2024-11-06 09:24:23 +01:00
|
|
|
// thread indices inside the simdgroup
|
2024-11-08 12:47:22 +01:00
|
|
|
// TODO: see if we can utilize quad-group functions for better performance
|
|
|
|
// https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf (6.9.3)
|
2024-11-06 09:24:23 +01:00
|
|
|
const short tx = tiisg%4;
|
|
|
|
const short ty = tiisg/4;
|
|
|
|
|
2024-11-08 12:47:22 +01:00
|
|
|
// broadcast kv
|
|
|
|
//const short rk2 = ne02/ne12;
|
|
|
|
//const short rk3 = ne03/ne13;
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
|
2024-11-08 12:47:22 +01:00
|
|
|
const short ikv2 = iq2/(ne02/ne_12_2);
|
|
|
|
const short ikv3 = iq3/(ne03/ne_12_3);
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
|
|
|
|
// load the queries from shared memory into local memory
|
2024-11-08 12:47:22 +01:00
|
|
|
q8x8_t mq[D8];
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
|
|
|
|
for (short i = 0; i < D8; ++i) {
|
2024-11-08 12:47:22 +01:00
|
|
|
simdgroup_load(mq[i], sq + i*8, D);
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
}
|
|
|
|
|
2024-11-08 12:47:22 +01:00
|
|
|
const bool has_mask = mask != q;
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
|
2024-11-08 12:47:22 +01:00
|
|
|
half slope = 1.0f;
|
2024-05-11 09:32:41 +02:00
|
|
|
|
|
|
|
// ALiBi
|
|
|
|
if (max_bias > 0.0f) {
|
2024-11-08 12:47:22 +01:00
|
|
|
const short h = iq2;
|
2024-05-11 09:32:41 +02:00
|
|
|
|
2024-11-08 12:47:22 +01:00
|
|
|
const half base = h < n_head_log2 ? m0 : m1;
|
|
|
|
const short exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
|
2024-05-11 09:32:41 +02:00
|
|
|
|
2024-05-21 22:03:42 +02:00
|
|
|
slope = pow(base, exph);
|
2024-05-11 09:32:41 +02:00
|
|
|
}
|
|
|
|
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
// loop over the KV cache
|
|
|
|
// each simdgroup handles blocks of Q rows and C columns
|
|
|
|
for (int ic0 = 0; ic0 < ne11; ic0 += C*nsg) {
|
|
|
|
const int ic = ic0 + C*sgitg;
|
|
|
|
if (ic >= ne11) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2024-11-08 12:47:22 +01:00
|
|
|
if (has_mask) {
|
|
|
|
// used to detect blocks full of -INF
|
|
|
|
half smax = -INFINITY;
|
|
|
|
|
|
|
|
// load the mask in shared memory
|
2024-11-11 07:39:13 +01:00
|
|
|
#pragma unroll(Q)
|
2024-11-08 12:47:22 +01:00
|
|
|
for (short j = 0; j < Q; ++j) {
|
|
|
|
device const half * pm = (device const half *) ((device const char *) mask + (iq1 + j)*nb31);
|
|
|
|
|
|
|
|
const half m = pm[ic + tiisg];
|
|
|
|
|
|
|
|
ss[j*TS + C + tiisg] = m;
|
|
|
|
smax = max(smax, m);
|
|
|
|
}
|
|
|
|
|
|
|
|
smax = simd_max(smax);
|
|
|
|
|
|
|
|
if (smax == -INFINITY) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
// Q*K^T
|
|
|
|
{
|
|
|
|
for (short cc = 0; cc < C/8; ++cc) {
|
2024-11-08 12:47:22 +01:00
|
|
|
qk8x8_t mqk = make_filled_simdgroup_matrix<qk_t, 8>((qk_t) 0.0f);
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
|
2024-11-06 09:24:23 +01:00
|
|
|
// this is compile-time check, so it does not have runtime overhead
|
2024-11-08 12:47:22 +01:00
|
|
|
if (is_same<kd4x4_t, k4x4_t>::value) {
|
2024-11-06 09:24:23 +01:00
|
|
|
// we can read directly from global memory
|
2024-11-08 12:47:22 +01:00
|
|
|
device const k_t * pk = (device const k_t *) ((device const char *) k + ((ic + 8*cc)*nb_12_1 + ikv2*nb_12_2 + ikv3*nb_12_3));
|
2024-11-06 09:24:23 +01:00
|
|
|
|
2024-11-11 07:39:13 +01:00
|
|
|
#pragma unroll(D8)
|
2024-11-06 09:24:23 +01:00
|
|
|
for (short i = 0; i < D8; ++i) {
|
2024-11-08 12:47:22 +01:00
|
|
|
k8x8_t mk;
|
|
|
|
simdgroup_load(mk, pk + i*8, nb_12_1/sizeof(k_t), 0, true); // transpose // TODO: use ne10
|
2024-11-06 09:24:23 +01:00
|
|
|
|
|
|
|
simdgroup_multiply_accumulate(mqk, mq[i], mk, mqk);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
for (short ii = 0; ii < D16; ii += 4) {
|
2024-11-08 12:47:22 +01:00
|
|
|
device const kd4x4_t * pk4x4 = (device const kd4x4_t *) ((device const char *) k + ((ic + 8*cc + ty)*nb_12_1 + ikv2*nb_12_2 + ikv3*nb_12_3));
|
2024-11-06 09:24:23 +01:00
|
|
|
|
|
|
|
if (D16%4 == 0) {
|
|
|
|
// the head is evenly divisible by 4*16 = 64, so no need for bound checks
|
2024-11-08 12:47:22 +01:00
|
|
|
{
|
|
|
|
k4x4_t tmp;
|
|
|
|
deq_k(pk4x4 + (ii + tx)/nl_k, (ii + tx)%nl_k, tmp);
|
|
|
|
sk4x4[4*ty + tx] = tmp;
|
|
|
|
}
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
|
2024-11-06 09:24:23 +01:00
|
|
|
simdgroup_barrier(mem_flags::mem_threadgroup);
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
|
2024-11-11 07:39:13 +01:00
|
|
|
#pragma unroll(4)
|
2024-11-06 09:24:23 +01:00
|
|
|
for (short k = 0; k < 4; ++k) {
|
2024-11-08 12:47:22 +01:00
|
|
|
k8x8_t mk;
|
2024-11-06 09:24:23 +01:00
|
|
|
|
2024-11-08 12:47:22 +01:00
|
|
|
simdgroup_load(mk, sk + 16*k + 0*8, 4*16, 0, true); // transpose
|
2024-11-06 09:24:23 +01:00
|
|
|
simdgroup_multiply_accumulate(mqk, mq[2*(ii + k) + 0], mk, mqk);
|
|
|
|
|
2024-11-08 12:47:22 +01:00
|
|
|
simdgroup_load(mk, sk + 16*k + 1*8, 4*16, 0, true); // transpose
|
2024-11-06 09:24:23 +01:00
|
|
|
simdgroup_multiply_accumulate(mqk, mq[2*(ii + k) + 1], mk, mqk);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if (ii + tx < D16) {
|
2024-11-08 12:47:22 +01:00
|
|
|
k4x4_t tmp;
|
|
|
|
deq_k(pk4x4 + (ii + tx)/nl_k, (ii + tx)%nl_k, tmp);
|
|
|
|
sk4x4[4*ty + tx] = tmp;
|
2024-11-06 09:24:23 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
simdgroup_barrier(mem_flags::mem_threadgroup);
|
|
|
|
|
|
|
|
for (short k = 0; k < 4 && ii + k < D16; ++k) {
|
2024-11-08 12:47:22 +01:00
|
|
|
k8x8_t mk;
|
2024-11-06 09:24:23 +01:00
|
|
|
|
2024-11-08 12:47:22 +01:00
|
|
|
simdgroup_load(mk, sk + 16*k + 0*8, 4*16, 0, true); // transpose
|
2024-11-06 09:24:23 +01:00
|
|
|
simdgroup_multiply_accumulate(mqk, mq[2*(ii + k) + 0], mk, mqk);
|
|
|
|
|
2024-11-08 12:47:22 +01:00
|
|
|
simdgroup_load(mk, sk + 16*k + 1*8, 4*16, 0, true); // transpose
|
2024-11-06 09:24:23 +01:00
|
|
|
simdgroup_multiply_accumulate(mqk, mq[2*(ii + k) + 1], mk, mqk);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
}
|
|
|
|
|
2024-11-08 12:47:22 +01:00
|
|
|
// cast qk_t -> s_t
|
|
|
|
//s8x8_t mqks(1.0f);
|
|
|
|
//simdgroup_multiply(mqks, mqk, mqks);
|
|
|
|
//simdgroup_store(mqks, ss + 8*cc, TS, 0, false);
|
|
|
|
|
|
|
|
simdgroup_store(mqk, ss + 8*cc, TS, 0, false);
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// online softmax
|
|
|
|
{
|
2024-11-08 12:47:22 +01:00
|
|
|
for (ushort j = 0; j < Q; ++j) {
|
|
|
|
const half m = M[j];
|
2024-08-26 17:31:02 +02:00
|
|
|
|
|
|
|
// scale and apply the logitcap / mask
|
2024-11-08 12:47:22 +01:00
|
|
|
half s = ss[j*TS + tiisg]*scale;
|
2024-08-26 17:31:02 +02:00
|
|
|
|
|
|
|
if (logit_softcap != 0.0f) {
|
|
|
|
s = logit_softcap*precise::tanh(s);
|
|
|
|
}
|
|
|
|
|
2024-11-08 12:47:22 +01:00
|
|
|
// mqk = mqk + mask*slope
|
|
|
|
s += slope*ss[j*TS + C + tiisg];
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
|
|
|
|
M[j] = simd_max(max(M[j], s));
|
|
|
|
|
2024-11-08 12:47:22 +01:00
|
|
|
const half ms = exp(m - M[j]);
|
|
|
|
const half vs = exp(s - M[j]);
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
|
2024-11-08 12:47:22 +01:00
|
|
|
S[j] = S[j]*ms + simd_sum(vs);
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
|
|
|
|
// the P matrix from the paper (Q rows, C columns)
|
2024-11-08 12:47:22 +01:00
|
|
|
ss[j*TS + tiisg] = vs;
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
|
2024-11-08 12:47:22 +01:00
|
|
|
// create a QxQ diagonal matrix for rescaling the output
|
|
|
|
if (tiisg == j) {
|
|
|
|
ss[j*TS + 2*C + j] = ms;
|
|
|
|
}
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// O = diag(ms)*O
|
|
|
|
{
|
2024-11-08 12:47:22 +01:00
|
|
|
s8x8_t mm;
|
|
|
|
simdgroup_load(mm, ss + 2*C, TS, 0, false);
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
|
2024-11-11 07:39:13 +01:00
|
|
|
#pragma unroll(D8)
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
for (short i = 0; i < D8; ++i) {
|
|
|
|
simdgroup_multiply(lo[i], mm, lo[i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// O = O + (Q*K^T)*V
|
|
|
|
{
|
|
|
|
for (short cc = 0; cc < C/8; ++cc) {
|
2024-11-08 12:47:22 +01:00
|
|
|
s8x8_t ms;
|
|
|
|
simdgroup_load(ms, ss + 8*cc, TS, 0, false);
|
2024-11-06 09:24:23 +01:00
|
|
|
|
2024-11-08 12:47:22 +01:00
|
|
|
if (is_same<vd4x4_t, v4x4_t>::value) {
|
2024-11-06 09:24:23 +01:00
|
|
|
// we can read directly from global memory
|
2024-11-08 12:47:22 +01:00
|
|
|
device const v_t * pv = (device const v_t *) ((device const char *) v + ((ic + 8*cc)*nb_12_1 + ikv2*nb_12_2 + ikv3*nb_12_3));
|
2024-11-11 07:39:13 +01:00
|
|
|
|
|
|
|
#pragma unroll(D8)
|
2024-11-06 09:24:23 +01:00
|
|
|
for (short i = 0; i < D8; ++i) {
|
2024-11-08 12:47:22 +01:00
|
|
|
v8x8_t mv;
|
|
|
|
simdgroup_load(mv, pv + i*8, nb_12_1/sizeof(v_t), 0, false); // TODO: use ne20
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
|
2024-11-06 09:24:23 +01:00
|
|
|
simdgroup_multiply_accumulate(lo[i], ms, mv, lo[i]);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
for (short ii = 0; ii < D16; ii += 4) {
|
2024-11-08 12:47:22 +01:00
|
|
|
device const vd4x4_t * pv4x4 = (device const vd4x4_t *) ((device const char *) v + ((ic + 8*cc + ty)*nb_12_1 + ikv2*nb_12_2 + ikv3*nb_12_3));
|
2024-11-06 09:24:23 +01:00
|
|
|
|
|
|
|
if (D16%4 == 0) {
|
|
|
|
// no need for bound checks
|
2024-11-08 12:47:22 +01:00
|
|
|
{
|
|
|
|
v4x4_t tmp;
|
|
|
|
deq_v(pv4x4 + (ii + tx)/nl_v, (ii + tx)%nl_v, tmp);
|
|
|
|
sv4x4[4*ty + tx] = tmp;
|
|
|
|
}
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
|
2024-11-06 09:24:23 +01:00
|
|
|
simdgroup_barrier(mem_flags::mem_threadgroup);
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
|
2024-11-11 07:39:13 +01:00
|
|
|
#pragma unroll(4)
|
2024-11-06 09:24:23 +01:00
|
|
|
for (short k = 0; k < 4; ++k) {
|
2024-11-08 12:47:22 +01:00
|
|
|
v8x8_t mv;
|
2024-11-06 09:24:23 +01:00
|
|
|
|
2024-11-08 12:47:22 +01:00
|
|
|
simdgroup_load(mv, sv + 16*k + 0*8, 4*16, 0, false);
|
2024-11-06 09:24:23 +01:00
|
|
|
simdgroup_multiply_accumulate(lo[2*(ii + k) + 0], ms, mv, lo[2*(ii + k) + 0]);
|
|
|
|
|
2024-11-08 12:47:22 +01:00
|
|
|
simdgroup_load(mv, sv + 16*k + 1*8, 4*16, 0, false);
|
2024-11-06 09:24:23 +01:00
|
|
|
simdgroup_multiply_accumulate(lo[2*(ii + k) + 1], ms, mv, lo[2*(ii + k) + 1]);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if (ii + tx < D16) {
|
2024-11-08 12:47:22 +01:00
|
|
|
v4x4_t tmp;
|
|
|
|
deq_v(pv4x4 + (ii + tx)/nl_v, (ii + tx)%nl_v, tmp);
|
|
|
|
sv4x4[4*ty + tx] = tmp;
|
2024-11-06 09:24:23 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
simdgroup_barrier(mem_flags::mem_threadgroup);
|
|
|
|
|
|
|
|
for (short k = 0; k < 4 && ii + k < D16; ++k) {
|
2024-11-08 12:47:22 +01:00
|
|
|
v8x8_t mv;
|
2024-11-06 09:24:23 +01:00
|
|
|
|
2024-11-08 12:47:22 +01:00
|
|
|
simdgroup_load(mv, sv + 16*k + 0*8, 4*16, 0, false);
|
2024-11-06 09:24:23 +01:00
|
|
|
simdgroup_multiply_accumulate(lo[2*(ii + k) + 0], ms, mv, lo[2*(ii + k) + 0]);
|
|
|
|
|
2024-11-08 12:47:22 +01:00
|
|
|
simdgroup_load(mv, sv + 16*k + 1*8, 4*16, 0, false);
|
2024-11-06 09:24:23 +01:00
|
|
|
simdgroup_multiply_accumulate(lo[2*(ii + k) + 1], ms, mv, lo[2*(ii + k) + 1]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// these are needed for reducing the results from the simdgroups (reuse the ss buffer)
|
|
|
|
for (short j = 0; j < Q; ++j) {
|
|
|
|
if (tiisg == 0) {
|
2024-11-08 12:47:22 +01:00
|
|
|
ss[j*TS + 0] = S[j];
|
|
|
|
ss[j*TS + 1] = M[j];
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// reduce the warps sequentially
|
2024-11-08 12:47:22 +01:00
|
|
|
for (ushort sg = 1; sg < nsg; ++sg) {
|
|
|
|
half S = { 0.0f };
|
|
|
|
half M = { -__FLT16_MAX__/2 };
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
|
|
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
|
|
|
|
|
|
// each simdgroup stores its output to shared memory, reusing sq
|
|
|
|
if (sgitg == sg) {
|
|
|
|
for (short i = 0; i < D8; ++i) {
|
2024-11-08 12:47:22 +01:00
|
|
|
simdgroup_store(lo[i], so + i*8, D, 0, false);
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
|
|
|
|
|
|
// the first simdgroup accumulates the results from the other simdgroups
|
|
|
|
if (sgitg == 0) {
|
|
|
|
for (short j = 0; j < Q; ++j) {
|
2024-11-08 12:47:22 +01:00
|
|
|
const half S0 = ss[j*TS + 0];
|
|
|
|
const half S1 = ss[j*TS + sg*SH + 0];
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
|
2024-11-08 12:47:22 +01:00
|
|
|
const half M0 = ss[j*TS + 1];
|
|
|
|
const half M1 = ss[j*TS + sg*SH + 1];
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
|
|
|
|
M = max(M0, M1);
|
|
|
|
|
2024-11-08 12:47:22 +01:00
|
|
|
const half ms0 = exp(M0 - M);
|
|
|
|
const half ms1 = exp(M1 - M);
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
|
|
|
|
S = S0*ms0 + S1*ms1;
|
|
|
|
|
|
|
|
if (tiisg == 0) {
|
2024-11-08 12:47:22 +01:00
|
|
|
ss[j*TS + 0] = S;
|
|
|
|
ss[j*TS + 1] = M;
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
|
2024-11-08 12:47:22 +01:00
|
|
|
ss[j*TS + 2*C + j ] = ms0;
|
|
|
|
ss[j*TS + 2*C + j + sg*SH] = ms1;
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// O_0 = diag(ms0)*O_0 + diag(ms1)*O_1
|
|
|
|
{
|
2024-11-08 12:47:22 +01:00
|
|
|
s8x8_t ms0;
|
|
|
|
s8x8_t ms1;
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
|
2024-11-08 12:47:22 +01:00
|
|
|
simdgroup_load(ms0, ss + 2*C, TS, 0, false);
|
|
|
|
simdgroup_load(ms1, ss + 2*C + sg*SH, TS, 0, false);
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
|
2024-11-11 07:39:13 +01:00
|
|
|
#pragma unroll(D8)
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
for (short i = 0; i < D8; ++i) {
|
2024-11-08 12:47:22 +01:00
|
|
|
o8x8_t t;
|
|
|
|
|
|
|
|
simdgroup_load (t, so + i*8, D, 0, false);
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
simdgroup_multiply(t, ms1, t);
|
|
|
|
|
|
|
|
simdgroup_multiply_accumulate(lo[i], ms0, lo[i], t);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// store result to shared memory (reuse sq)
|
|
|
|
if (sgitg == 0) {
|
|
|
|
for (short i = 0; i < D8; ++i) {
|
2024-11-08 12:47:22 +01:00
|
|
|
simdgroup_store(lo[i], so + i*8, D, 0, false);
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
device float4 * dst4 = (device float4 *) dst;
|
|
|
|
|
|
|
|
// final rescale with 1/S and store to global memory
|
|
|
|
if (sgitg == 0) {
|
|
|
|
for (short j = 0; j < Q && iq1 + j < ne01; ++j) {
|
2024-11-08 12:47:22 +01:00
|
|
|
const float S = ss[j*TS + 0];
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
|
|
|
|
for (short i = tiisg; i < D4; i += NW) {
|
2024-11-08 12:47:22 +01:00
|
|
|
dst4[((int64_t)iq3*ne2*ne1 + iq2 + (iq1 + j)*ne1)*D4 + i] = (float4) so4[j*D4 + i]/S;
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2024-11-08 12:47:22 +01:00
|
|
|
// TODO: this is quite ugly. in the future these types will be hardcoded in the kernel, but for now keep them as
|
|
|
|
// template to be able to explore different combinations
|
|
|
|
//
|
|
|
|
#define FA_TYPES \
|
|
|
|
half, half4, simdgroup_half8x8, \
|
|
|
|
half, half4x4, simdgroup_half8x8, \
|
|
|
|
half, half4x4, simdgroup_half8x8, \
|
|
|
|
float, simdgroup_float8x8, \
|
|
|
|
float, simdgroup_float8x8, \
|
|
|
|
half, half4, simdgroup_half8x8
|
|
|
|
|
|
|
|
typedef decltype(kernel_flash_attn_ext<FA_TYPES, half4x4, 1, dequantize_f16, half4x4, 1, dequantize_f16, 64>) flash_attn_ext_t;
|
|
|
|
|
|
|
|
template [[host_name("kernel_flash_attn_ext_f16_h64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, half4x4, 1, dequantize_f16, half4x4, 1, dequantize_f16, 64>;
|
|
|
|
template [[host_name("kernel_flash_attn_ext_f16_h80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, half4x4, 1, dequantize_f16, half4x4, 1, dequantize_f16, 80>;
|
|
|
|
template [[host_name("kernel_flash_attn_ext_f16_h96" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, half4x4, 1, dequantize_f16, half4x4, 1, dequantize_f16, 96>;
|
|
|
|
template [[host_name("kernel_flash_attn_ext_f16_h112")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, half4x4, 1, dequantize_f16, half4x4, 1, dequantize_f16, 112>;
|
|
|
|
template [[host_name("kernel_flash_attn_ext_f16_h128")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, half4x4, 1, dequantize_f16, half4x4, 1, dequantize_f16, 128>;
|
|
|
|
template [[host_name("kernel_flash_attn_ext_f16_h256")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, half4x4, 1, dequantize_f16, half4x4, 1, dequantize_f16, 256>;
|
|
|
|
|
2024-11-08 20:59:46 +01:00
|
|
|
#if defined(GGML_METAL_USE_BF16)
|
2024-11-08 12:47:22 +01:00
|
|
|
template [[host_name("kernel_flash_attn_ext_bf16_h64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 64>;
|
|
|
|
template [[host_name("kernel_flash_attn_ext_bf16_h80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 80>;
|
|
|
|
template [[host_name("kernel_flash_attn_ext_bf16_h96" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 96>;
|
|
|
|
template [[host_name("kernel_flash_attn_ext_bf16_h112")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 112>;
|
|
|
|
template [[host_name("kernel_flash_attn_ext_bf16_h128")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 128>;
|
|
|
|
template [[host_name("kernel_flash_attn_ext_bf16_h256")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 256>;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
template [[host_name("kernel_flash_attn_ext_q4_0_h64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_0, 2, dequantize_q4_0, block_q4_0, 2, dequantize_q4_0, 64>;
|
|
|
|
template [[host_name("kernel_flash_attn_ext_q4_0_h80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_0, 2, dequantize_q4_0, block_q4_0, 2, dequantize_q4_0, 80>;
|
|
|
|
template [[host_name("kernel_flash_attn_ext_q4_0_h96" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_0, 2, dequantize_q4_0, block_q4_0, 2, dequantize_q4_0, 96>;
|
|
|
|
template [[host_name("kernel_flash_attn_ext_q4_0_h112")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_0, 2, dequantize_q4_0, block_q4_0, 2, dequantize_q4_0, 112>;
|
|
|
|
template [[host_name("kernel_flash_attn_ext_q4_0_h128")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_0, 2, dequantize_q4_0, block_q4_0, 2, dequantize_q4_0, 128>;
|
|
|
|
template [[host_name("kernel_flash_attn_ext_q4_0_h256")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_0, 2, dequantize_q4_0, block_q4_0, 2, dequantize_q4_0, 256>;
|
|
|
|
|
|
|
|
template [[host_name("kernel_flash_attn_ext_q4_1_h64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_1, 2, dequantize_q4_1, block_q4_1, 2, dequantize_q4_1, 64>;
|
|
|
|
template [[host_name("kernel_flash_attn_ext_q4_1_h80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_1, 2, dequantize_q4_1, block_q4_1, 2, dequantize_q4_1, 80>;
|
|
|
|
template [[host_name("kernel_flash_attn_ext_q4_1_h96" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_1, 2, dequantize_q4_1, block_q4_1, 2, dequantize_q4_1, 96>;
|
|
|
|
template [[host_name("kernel_flash_attn_ext_q4_1_h112")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_1, 2, dequantize_q4_1, block_q4_1, 2, dequantize_q4_1, 112>;
|
|
|
|
template [[host_name("kernel_flash_attn_ext_q4_1_h128")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_1, 2, dequantize_q4_1, block_q4_1, 2, dequantize_q4_1, 128>;
|
|
|
|
template [[host_name("kernel_flash_attn_ext_q4_1_h256")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q4_1, 2, dequantize_q4_1, block_q4_1, 2, dequantize_q4_1, 256>;
|
|
|
|
|
|
|
|
template [[host_name("kernel_flash_attn_ext_q5_0_h64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_0, 2, dequantize_q5_0, block_q5_0, 2, dequantize_q5_0, 64>;
|
|
|
|
template [[host_name("kernel_flash_attn_ext_q5_0_h80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_0, 2, dequantize_q5_0, block_q5_0, 2, dequantize_q5_0, 80>;
|
|
|
|
template [[host_name("kernel_flash_attn_ext_q5_0_h96" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_0, 2, dequantize_q5_0, block_q5_0, 2, dequantize_q5_0, 96>;
|
|
|
|
template [[host_name("kernel_flash_attn_ext_q5_0_h112")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_0, 2, dequantize_q5_0, block_q5_0, 2, dequantize_q5_0, 112>;
|
|
|
|
template [[host_name("kernel_flash_attn_ext_q5_0_h128")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_0, 2, dequantize_q5_0, block_q5_0, 2, dequantize_q5_0, 128>;
|
|
|
|
template [[host_name("kernel_flash_attn_ext_q5_0_h256")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_0, 2, dequantize_q5_0, block_q5_0, 2, dequantize_q5_0, 256>;
|
|
|
|
|
|
|
|
template [[host_name("kernel_flash_attn_ext_q5_1_h64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_1, 2, dequantize_q5_1, block_q5_1, 2, dequantize_q5_1, 64>;
|
|
|
|
template [[host_name("kernel_flash_attn_ext_q5_1_h80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_1, 2, dequantize_q5_1, block_q5_1, 2, dequantize_q5_1, 80>;
|
|
|
|
template [[host_name("kernel_flash_attn_ext_q5_1_h96" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_1, 2, dequantize_q5_1, block_q5_1, 2, dequantize_q5_1, 96>;
|
|
|
|
template [[host_name("kernel_flash_attn_ext_q5_1_h112")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_1, 2, dequantize_q5_1, block_q5_1, 2, dequantize_q5_1, 112>;
|
|
|
|
template [[host_name("kernel_flash_attn_ext_q5_1_h128")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_1, 2, dequantize_q5_1, block_q5_1, 2, dequantize_q5_1, 128>;
|
|
|
|
template [[host_name("kernel_flash_attn_ext_q5_1_h256")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q5_1, 2, dequantize_q5_1, block_q5_1, 2, dequantize_q5_1, 256>;
|
|
|
|
|
|
|
|
template [[host_name("kernel_flash_attn_ext_q8_0_h64" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q8_0, 2, dequantize_q8_0, block_q8_0, 2, dequantize_q8_0, 64>;
|
|
|
|
template [[host_name("kernel_flash_attn_ext_q8_0_h80" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q8_0, 2, dequantize_q8_0, block_q8_0, 2, dequantize_q8_0, 80>;
|
|
|
|
template [[host_name("kernel_flash_attn_ext_q8_0_h96" )]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q8_0, 2, dequantize_q8_0, block_q8_0, 2, dequantize_q8_0, 96>;
|
|
|
|
template [[host_name("kernel_flash_attn_ext_q8_0_h112")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q8_0, 2, dequantize_q8_0, block_q8_0, 2, dequantize_q8_0, 112>;
|
|
|
|
template [[host_name("kernel_flash_attn_ext_q8_0_h128")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q8_0, 2, dequantize_q8_0, block_q8_0, 2, dequantize_q8_0, 128>;
|
|
|
|
template [[host_name("kernel_flash_attn_ext_q8_0_h256")]] kernel flash_attn_ext_t kernel_flash_attn_ext<FA_TYPES, block_q8_0, 2, dequantize_q8_0, block_q8_0, 2, dequantize_q8_0, 256>;
|
|
|
|
|
|
|
|
#undef FA_TYPES
|
|
|
|
|
|
|
|
template<
|
|
|
|
typename q4_t, // query types in shared memory
|
|
|
|
typename q4x4_t,
|
|
|
|
typename k4x4_t, // key types in shared memory
|
|
|
|
typename v4x4_t, // value types in shared memory
|
|
|
|
typename qk_t, // Q*K types
|
|
|
|
typename s_t, // soft-max types
|
|
|
|
typename s4_t,
|
|
|
|
typename s4x4_t,
|
|
|
|
typename o4x4_t, // attention accumulation types
|
|
|
|
typename kd4x4_t, // key type in device memory
|
|
|
|
short nl_k,
|
|
|
|
void (*deq_k)(device const kd4x4_t *, short, thread k4x4_t &),
|
|
|
|
typename vd4x4_t, // key type in device memory
|
|
|
|
short nl_v,
|
|
|
|
void (*deq_v)(device const vd4x4_t *, short, thread v4x4_t &),
|
|
|
|
short D, // head size
|
|
|
|
short Q = 1, // queries per threadgroup
|
|
|
|
short C = 32> // cache items per threadgroup
|
2024-11-06 09:24:23 +01:00
|
|
|
kernel void kernel_flash_attn_ext_vec(
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
device const char * q,
|
|
|
|
device const char * k,
|
|
|
|
device const char * v,
|
|
|
|
device const char * mask,
|
|
|
|
device float * dst,
|
2024-11-08 12:47:22 +01:00
|
|
|
constant int32_t & ne01,
|
|
|
|
constant int32_t & ne02,
|
|
|
|
constant int32_t & ne03,
|
|
|
|
constant uint32_t & nb01,
|
|
|
|
constant uint32_t & nb02,
|
|
|
|
constant uint32_t & nb03,
|
|
|
|
constant int32_t & ne11,
|
|
|
|
constant int32_t & ne_12_2, // assume K and V are same shape
|
|
|
|
constant int32_t & ne_12_3,
|
|
|
|
constant uint32_t & nb_12_1,
|
|
|
|
constant uint32_t & nb_12_2,
|
|
|
|
constant uint32_t & nb_12_3,
|
|
|
|
constant uint32_t & nb31,
|
|
|
|
constant int32_t & ne1,
|
|
|
|
constant int32_t & ne2,
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
constant float & scale,
|
2024-05-11 09:32:41 +02:00
|
|
|
constant float & max_bias,
|
|
|
|
constant float & m0,
|
|
|
|
constant float & m1,
|
2024-11-08 12:47:22 +01:00
|
|
|
constant uint16_t & n_head_log2,
|
2024-08-26 11:08:59 +02:00
|
|
|
constant float & logit_softcap,
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
threadgroup half * shared [[threadgroup(0)]],
|
2024-11-08 12:47:22 +01:00
|
|
|
ushort3 tgpig[[threadgroup_position_in_grid]],
|
|
|
|
ushort3 tpitg[[thread_position_in_threadgroup]],
|
|
|
|
ushort3 ntg[[threads_per_threadgroup]],
|
|
|
|
ushort tiisg[[thread_index_in_simdgroup]],
|
|
|
|
ushort sgitg[[simdgroup_index_in_threadgroup]]) {
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
const short nsg = ntg.y; // number of simdgroups
|
|
|
|
|
2024-11-06 09:24:23 +01:00
|
|
|
const int iq3 = tgpig[2];
|
|
|
|
const int iq2 = tgpig[1];
|
|
|
|
const int iq1 = tgpig[0];
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
|
2024-11-06 09:24:23 +01:00
|
|
|
const short D4 = D/4;
|
|
|
|
const short D16 = D/16;
|
|
|
|
const short NW = N_SIMDWIDTH;
|
2024-11-09 10:53:02 +01:00
|
|
|
const short NL = NW/4; // note: this can be adjusted to support D%64 == 0 and D%32 == 0
|
|
|
|
const short SH = 2*C; // shared memory per simdgroup
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
|
2024-11-08 12:47:22 +01:00
|
|
|
const short T = D + nsg*SH; // shared memory size per query in (half)
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
|
2024-11-08 12:47:22 +01:00
|
|
|
//threadgroup q_t * sq = (threadgroup q_t *) (shared + 0*D); // holds the query data
|
|
|
|
threadgroup q4_t * sq4 = (threadgroup q4_t *) (shared + 0*D); // same as above but in q4_t
|
|
|
|
threadgroup q4x4_t * sq4x4 = (threadgroup q4x4_t *) (shared + 0*D); // same as above but in q4x4_t
|
|
|
|
threadgroup s_t * ss = (threadgroup s_t *) (shared + sgitg*SH + Q*D); // scratch buffer for attention
|
|
|
|
threadgroup s4_t * ss4 = (threadgroup s4_t *) (shared + sgitg*SH + Q*D); // same as above but in s4_t
|
|
|
|
threadgroup half * sm = (threadgroup half *) (shared + sgitg*SH + C + Q*D); // scratch buffer for mask
|
|
|
|
threadgroup o4x4_t * sr4x4 = (threadgroup o4x4_t *) (shared + sgitg*D + Q*T); // scratch buffer for the results
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
|
|
|
|
// store the result for all queries in local memory in 8x8 matrices (the O matrix from the paper)
|
2024-11-08 17:37:41 +01:00
|
|
|
o4x4_t lo[D16/NL];
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
|
|
|
|
// load heads from Q to shared memory
|
|
|
|
device const float4 * q4 = (device const float4 *) ((device const char *) q + (iq1*nb01 + iq2*nb02 + iq3*nb03));
|
|
|
|
|
|
|
|
for (short i = tiisg; i < D4; i += NW) {
|
|
|
|
if (iq1 < ne01) {
|
2024-11-08 12:47:22 +01:00
|
|
|
sq4[i] = (q4_t) q4[i];
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
} else {
|
2024-11-08 12:47:22 +01:00
|
|
|
sq4[i] = (q4_t) 0.0f;
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// zero out lo
|
2024-11-08 17:37:41 +01:00
|
|
|
for (short i = 0; i < D16/NL; ++i) {
|
2024-11-08 12:47:22 +01:00
|
|
|
lo[i] = (o4x4_t) 0.0f;
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
// zero out shared memory SH
|
|
|
|
for (short i = tiisg; i < SH/4; i += NW) {
|
2024-11-08 12:47:22 +01:00
|
|
|
ss4[i] = (s4_t) 0.0f;
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
|
|
|
|
|
|
{
|
2024-11-08 12:47:22 +01:00
|
|
|
half S = 0.0f;
|
|
|
|
half M = -__FLT16_MAX__/2;
|
2024-11-06 09:24:23 +01:00
|
|
|
|
|
|
|
// thread indices inside the simdgroup
|
2024-11-08 17:37:41 +01:00
|
|
|
const short tx = tiisg%NL;
|
|
|
|
const short ty = tiisg/NL;
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
|
2024-11-08 12:47:22 +01:00
|
|
|
// broadcast kv
|
|
|
|
//const short rk2 = ne02/ne12;
|
|
|
|
//const short rk3 = ne03/ne13;
|
2024-11-06 09:24:23 +01:00
|
|
|
|
2024-11-08 12:47:22 +01:00
|
|
|
const short ikv2 = iq2/(ne02/ne_12_2);
|
|
|
|
const short ikv3 = iq3/(ne03/ne_12_3);
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
|
|
|
|
// load the queries from shared memory into local memory
|
2024-11-08 17:37:41 +01:00
|
|
|
q4x4_t mq[D16/NL];
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
|
2024-11-11 07:39:13 +01:00
|
|
|
#pragma unroll(D16/NL)
|
2024-11-08 17:37:41 +01:00
|
|
|
for (short ii = 0; ii < D16; ii += NL) {
|
|
|
|
mq[ii/NL] = sq4x4[ii + tx];
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
}
|
|
|
|
|
2024-11-08 12:47:22 +01:00
|
|
|
const bool has_mask = mask != q;
|
|
|
|
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
// pointer to the mask
|
2024-11-08 12:47:22 +01:00
|
|
|
device const half * pm = (device const half *) (mask + iq1*nb31);
|
2024-11-06 09:24:23 +01:00
|
|
|
|
2024-11-08 12:47:22 +01:00
|
|
|
half slope = 1.0f;
|
2024-11-06 09:24:23 +01:00
|
|
|
|
|
|
|
// ALiBi
|
|
|
|
if (max_bias > 0.0f) {
|
2024-11-08 12:47:22 +01:00
|
|
|
const short h = iq2;
|
2024-11-06 09:24:23 +01:00
|
|
|
|
2024-11-08 12:47:22 +01:00
|
|
|
const half base = h < n_head_log2 ? m0 : m1;
|
|
|
|
const short exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
|
2024-11-06 09:24:23 +01:00
|
|
|
|
2024-11-08 12:47:22 +01:00
|
|
|
slope = pow(base, exph);
|
2024-11-06 09:24:23 +01:00
|
|
|
}
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
|
|
|
|
// loop over the KV cache
|
|
|
|
// each simdgroup handles blocks of Q rows and C columns
|
|
|
|
for (int ic0 = 0; ic0 < ne11; ic0 += C*nsg) {
|
|
|
|
const int ic = ic0 + C*sgitg;
|
|
|
|
if (ic >= ne11) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2024-11-08 12:47:22 +01:00
|
|
|
if (has_mask) {
|
|
|
|
sm[tiisg] = pm[ic + tiisg];
|
|
|
|
}
|
|
|
|
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
// Q*K^T
|
|
|
|
{
|
2024-11-09 10:53:02 +01:00
|
|
|
// each simdgroup processes 1 query and 4 (NW/NL) keys
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
for (short cc = 0; cc < C/4; ++cc) {
|
2024-11-09 10:52:45 +01:00
|
|
|
qk_t mqka[4] = { 0.0, 0.0, 0.0, 0.0 };
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
|
2024-11-08 12:47:22 +01:00
|
|
|
device const kd4x4_t * pk = (device const kd4x4_t *) ((device const char *) k + ((ic + 4*cc + ty)*nb_12_1 + ikv2*nb_12_2 + ikv3*nb_12_3));
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
|
2024-11-11 07:39:13 +01:00
|
|
|
#pragma unroll(D16/NL)
|
2024-11-08 17:37:41 +01:00
|
|
|
for (short ii = 0; ii < D16; ii += NL) {
|
2024-11-06 09:24:23 +01:00
|
|
|
const short i = ii + tx;
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
|
2024-11-08 12:47:22 +01:00
|
|
|
k4x4_t mk;
|
|
|
|
deq_k(pk + i/nl_k, i%nl_k, mk);
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
|
2024-11-11 07:39:13 +01:00
|
|
|
// note: this is less precise than the version below
|
|
|
|
//mqka[0] += dot(mq[ii/NL][0], mk[0]);
|
|
|
|
//mqka[1] += dot(mq[ii/NL][1], mk[1]);
|
|
|
|
//mqka[2] += dot(mq[ii/NL][2], mk[2]);
|
|
|
|
//mqka[3] += dot(mq[ii/NL][3], mk[3]);
|
|
|
|
|
|
|
|
mqka[0] += dot((float4) mq[ii/NL][0], (float4) mk[0]);
|
|
|
|
mqka[1] += dot((float4) mq[ii/NL][1], (float4) mk[1]);
|
|
|
|
mqka[2] += dot((float4) mq[ii/NL][2], (float4) mk[2]);
|
|
|
|
mqka[3] += dot((float4) mq[ii/NL][3], (float4) mk[3]);
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
}
|
|
|
|
|
2024-11-09 10:52:45 +01:00
|
|
|
qk_t mqk = mqka[0] + mqka[1] + mqka[2] + mqka[3];
|
|
|
|
|
2024-11-06 09:24:23 +01:00
|
|
|
// simdgroup reduce
|
|
|
|
// [ 0 .. 7] -> [ 0]
|
|
|
|
// [ 8 .. 15] -> [ 8]
|
|
|
|
// [16 .. 23] -> [16]
|
|
|
|
// [24 .. 31] -> [24]
|
|
|
|
//mqk += simd_shuffle_down(mqk, 16);
|
|
|
|
//mqk += simd_shuffle_down(mqk, 8);
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
mqk += simd_shuffle_down(mqk, 4);
|
|
|
|
mqk += simd_shuffle_down(mqk, 2);
|
|
|
|
mqk += simd_shuffle_down(mqk, 1);
|
|
|
|
|
2024-05-11 09:32:41 +02:00
|
|
|
// mqk = mqk*scale + mask*slope
|
2024-11-06 09:24:23 +01:00
|
|
|
if (tx == 0) {
|
2024-08-26 11:08:59 +02:00
|
|
|
mqk *= scale;
|
|
|
|
|
|
|
|
if (logit_softcap != 0.0f) {
|
|
|
|
mqk = logit_softcap*precise::tanh(mqk);
|
|
|
|
}
|
|
|
|
|
2024-11-08 12:47:22 +01:00
|
|
|
mqk += sm[4*cc + ty]*slope;
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
|
2024-11-06 09:24:23 +01:00
|
|
|
ss[4*cc + ty] = mqk;
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2024-11-06 09:24:23 +01:00
|
|
|
simdgroup_barrier(mem_flags::mem_threadgroup);
|
|
|
|
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
// online softmax
|
|
|
|
{
|
2024-11-08 12:47:22 +01:00
|
|
|
const half m = M;
|
|
|
|
const half s = ss[tiisg];
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
|
|
|
|
M = simd_max(max(M, s));
|
|
|
|
|
2024-11-08 12:47:22 +01:00
|
|
|
const half ms = exp(m - M);
|
|
|
|
const half vs = exp(s - M);
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
|
|
|
|
S = S*ms + simd_sum(vs);
|
|
|
|
|
|
|
|
// the P matrix from the paper (Q rows, C columns)
|
2024-11-08 12:47:22 +01:00
|
|
|
ss[tiisg] = vs;
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
|
|
|
|
// O = diag(ms)*O
|
2024-11-11 07:39:13 +01:00
|
|
|
#pragma unroll(D16/NL)
|
2024-11-08 17:37:41 +01:00
|
|
|
for (short ii = 0; ii < D16; ii += NL) {
|
|
|
|
lo[ii/NL] *= ms;
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2024-11-06 09:24:23 +01:00
|
|
|
simdgroup_barrier(mem_flags::mem_threadgroup);
|
|
|
|
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
// O = O + (Q*K^T)*V
|
|
|
|
{
|
|
|
|
for (short cc = 0; cc < C/4; ++cc) {
|
2024-11-08 12:47:22 +01:00
|
|
|
device const vd4x4_t * pv4 = (device const vd4x4_t *) ((device const char *) v + ((ic + 4*cc + ty)*nb_12_1 + ikv2*nb_12_2 + ikv3*nb_12_3));
|
2024-11-06 09:24:23 +01:00
|
|
|
|
2024-11-08 12:47:22 +01:00
|
|
|
const s4x4_t ms(ss[4*cc + ty]);
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
|
2024-11-11 07:39:13 +01:00
|
|
|
#pragma unroll(D16/NL)
|
2024-11-08 17:37:41 +01:00
|
|
|
for (short ii = 0; ii < D16; ii += NL) {
|
2024-11-06 09:24:23 +01:00
|
|
|
const short i = ii + tx;
|
|
|
|
|
2024-11-08 12:47:22 +01:00
|
|
|
v4x4_t mv;
|
|
|
|
deq_v(pv4 + i/nl_v, i%nl_v, mv);
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
|
2024-11-08 17:37:41 +01:00
|
|
|
lo[ii/NL] += mv*ms;
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// these are needed for reducing the results from the simdgroups (reuse the ss buffer)
|
|
|
|
if (tiisg == 0) {
|
2024-11-08 12:47:22 +01:00
|
|
|
ss[0] = (s_t) S;
|
|
|
|
ss[1] = (s_t) M;
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2024-11-06 09:24:23 +01:00
|
|
|
// simdgroup reduce
|
|
|
|
// [ 0, 8, 16, 24] -> [ 0]
|
|
|
|
// [ 1, 9, 17, 25] -> [ 1]
|
|
|
|
// [ 2, 10, 18, 26] -> [ 2]
|
|
|
|
// [ 3, 11, 19, 27] -> [ 3]
|
|
|
|
// [ 4, 12, 20, 28] -> [ 4]
|
|
|
|
// [ 5, 13, 21, 29] -> [ 5]
|
|
|
|
// [ 6, 14, 22, 30] -> [ 6]
|
|
|
|
// [ 7, 15, 23, 31] -> [ 7]
|
2024-11-08 17:37:41 +01:00
|
|
|
for (short ii = 0; ii < D16; ii += NL) {
|
|
|
|
lo[ii/NL][0] += simd_shuffle_down(lo[ii/NL][0], 16);
|
|
|
|
lo[ii/NL][0] += simd_shuffle_down(lo[ii/NL][0], 8);
|
|
|
|
//lo[ii/NL][0] += simd_shuffle_down(lo[ii/NL][0], 4);
|
|
|
|
//lo[ii/NL][0] += simd_shuffle_down(lo[ii/NL][0], 2);
|
|
|
|
//lo[ii/NL][0] += simd_shuffle_down(lo[ii/NL][0], 1);
|
|
|
|
|
|
|
|
lo[ii/NL][1] += simd_shuffle_down(lo[ii/NL][1], 16);
|
|
|
|
lo[ii/NL][1] += simd_shuffle_down(lo[ii/NL][1], 8);
|
|
|
|
//lo[ii/NL][1] += simd_shuffle_down(lo[ii/NL][1], 4);
|
|
|
|
//lo[ii/NL][1] += simd_shuffle_down(lo[ii/NL][1], 2);
|
|
|
|
//lo[ii/NL][1] += simd_shuffle_down(lo[ii/NL][1], 1);
|
|
|
|
|
|
|
|
lo[ii/NL][2] += simd_shuffle_down(lo[ii/NL][2], 16);
|
|
|
|
lo[ii/NL][2] += simd_shuffle_down(lo[ii/NL][2], 8);
|
|
|
|
//lo[ii/NL][2] += simd_shuffle_down(lo[ii/NL][2], 4);
|
|
|
|
//lo[ii/NL][2] += simd_shuffle_down(lo[ii/NL][2], 2);
|
|
|
|
//lo[ii/NL][2] += simd_shuffle_down(lo[ii/NL][2], 1);
|
|
|
|
|
|
|
|
lo[ii/NL][3] += simd_shuffle_down(lo[ii/NL][3], 16);
|
|
|
|
lo[ii/NL][3] += simd_shuffle_down(lo[ii/NL][3], 8);
|
|
|
|
//lo[ii/NL][3] += simd_shuffle_down(lo[ii/NL][3], 4);
|
|
|
|
//lo[ii/NL][3] += simd_shuffle_down(lo[ii/NL][3], 2);
|
|
|
|
//lo[ii/NL][3] += simd_shuffle_down(lo[ii/NL][3], 1);
|
2024-11-06 09:24:23 +01:00
|
|
|
}
|
|
|
|
|
2024-11-08 17:37:41 +01:00
|
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
|
|
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
// store results to shared memory
|
2024-11-08 17:37:41 +01:00
|
|
|
for (short i = tiisg; i < D16; i += NL) {
|
|
|
|
sr4x4[i] = lo[i/NL];
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
|
|
|
|
|
|
// parallel reduce
|
|
|
|
for (short r = nsg/2; r > 0; r >>= 1) {
|
|
|
|
if (sgitg < r) {
|
2024-11-08 12:47:22 +01:00
|
|
|
const half S0 = ss[ 0];
|
|
|
|
const half S1 = ss[r*SH + 0];
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
|
2024-11-08 12:47:22 +01:00
|
|
|
const half M0 = ss[ 1];
|
|
|
|
const half M1 = ss[r*SH + 1];
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
|
2024-11-08 12:47:22 +01:00
|
|
|
const half M = max(M0, M1);
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
|
2024-11-08 12:47:22 +01:00
|
|
|
const half ms0 = exp(M0 - M);
|
|
|
|
const half ms1 = exp(M1 - M);
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
|
2024-11-08 12:47:22 +01:00
|
|
|
const half S = S0*ms0 + S1*ms1;
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
|
|
|
|
if (tiisg == 0) {
|
|
|
|
ss[0] = S;
|
|
|
|
ss[1] = M;
|
|
|
|
}
|
|
|
|
|
|
|
|
// O_0 = diag(ms0)*O_0 + diag(ms1)*O_1
|
2024-11-06 09:24:23 +01:00
|
|
|
for (short i = tiisg; i < D16; i += NW) {
|
2024-11-08 12:47:22 +01:00
|
|
|
sr4x4[i] = sr4x4[i]*ms0 + sr4x4[i + r*D16]*ms1;
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
|
|
}
|
|
|
|
|
2024-11-06 09:24:23 +01:00
|
|
|
device float4x4 * dst44 = (device float4x4 *) dst;
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
|
|
|
|
// final rescale with 1/S and store to global memory
|
|
|
|
if (sgitg == 0) {
|
|
|
|
const float S = ss[0];
|
|
|
|
|
2024-11-06 09:24:23 +01:00
|
|
|
for (short i = tiisg; i < D16; i += NW) {
|
2024-11-08 12:47:22 +01:00
|
|
|
dst44[((int64_t)iq3*ne2*ne1 + iq2 + (iq1)*ne1)*D16 + i] = (float4x4) sr4x4[i]/S;
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2024-11-08 12:47:22 +01:00
|
|
|
// note: I think the s_t can be half instead of float, because the Q*K scaling is done before storing to shared mem
|
|
|
|
// in the other (non-vec) kernel, we need s_t to also be float because we scale during the soft_max
|
|
|
|
//
|
|
|
|
#define FA_TYPES \
|
|
|
|
half4, half4x4, \
|
|
|
|
half4x4, \
|
|
|
|
half4x4, \
|
|
|
|
float, \
|
|
|
|
half, half4, half4x4, \
|
|
|
|
half4x4
|
|
|
|
|
2024-11-09 10:53:02 +01:00
|
|
|
typedef decltype(kernel_flash_attn_ext_vec<FA_TYPES, half4x4, 1, dequantize_f16, half4x4, 1, dequantize_f16, 128>) flash_attn_ext_vec_t;
|
2024-11-06 09:24:23 +01:00
|
|
|
|
2024-11-08 12:47:22 +01:00
|
|
|
template [[host_name("kernel_flash_attn_ext_vec_f16_h128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, half4x4, 1, dequantize_f16, half4x4, 1, dequantize_f16, 128>;
|
2024-11-08 20:59:46 +01:00
|
|
|
#if defined(GGML_METAL_USE_BF16)
|
2024-11-08 12:47:22 +01:00
|
|
|
template [[host_name("kernel_flash_attn_ext_vec_bf16_h128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 128>;
|
|
|
|
#endif
|
|
|
|
template [[host_name("kernel_flash_attn_ext_vec_q4_0_h128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_0, 2, dequantize_q4_0, block_q4_0, 2, dequantize_q4_0, 128>;
|
|
|
|
template [[host_name("kernel_flash_attn_ext_vec_q4_1_h128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_1, 2, dequantize_q4_1, block_q4_1, 2, dequantize_q4_1, 128>;
|
|
|
|
template [[host_name("kernel_flash_attn_ext_vec_q5_0_h128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_0, 2, dequantize_q5_0, block_q5_0, 2, dequantize_q5_0, 128>;
|
|
|
|
template [[host_name("kernel_flash_attn_ext_vec_q5_1_h128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_1, 2, dequantize_q5_1, block_q5_1, 2, dequantize_q5_1, 128>;
|
|
|
|
template [[host_name("kernel_flash_attn_ext_vec_q8_0_h128")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q8_0, 2, dequantize_q8_0, block_q8_0, 2, dequantize_q8_0, 128>;
|
|
|
|
|
|
|
|
template [[host_name("kernel_flash_attn_ext_vec_f16_h256")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, half4x4, 1, dequantize_f16, half4x4, 1, dequantize_f16, 256>;
|
2024-11-08 20:59:46 +01:00
|
|
|
#if defined(GGML_METAL_USE_BF16)
|
2024-11-08 12:47:22 +01:00
|
|
|
template [[host_name("kernel_flash_attn_ext_vec_bf16_h256")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, bfloat4x4, 1, dequantize_bf16, bfloat4x4, 1, dequantize_bf16, 256>;
|
|
|
|
#endif
|
|
|
|
template [[host_name("kernel_flash_attn_ext_vec_q4_0_h256")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_0, 2, dequantize_q4_0, block_q4_0, 2, dequantize_q4_0, 256>;
|
|
|
|
template [[host_name("kernel_flash_attn_ext_vec_q4_1_h256")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q4_1, 2, dequantize_q4_1, block_q4_1, 2, dequantize_q4_1, 256>;
|
|
|
|
template [[host_name("kernel_flash_attn_ext_vec_q5_0_h256")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_0, 2, dequantize_q5_0, block_q5_0, 2, dequantize_q5_0, 256>;
|
|
|
|
template [[host_name("kernel_flash_attn_ext_vec_q5_1_h256")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q5_1, 2, dequantize_q5_1, block_q5_1, 2, dequantize_q5_1, 256>;
|
|
|
|
template [[host_name("kernel_flash_attn_ext_vec_q8_0_h256")]] kernel flash_attn_ext_vec_t kernel_flash_attn_ext_vec<FA_TYPES, block_q8_0, 2, dequantize_q8_0, block_q8_0, 2, dequantize_q8_0, 256>;
|
2024-11-06 09:24:23 +01:00
|
|
|
|
2024-11-08 12:47:22 +01:00
|
|
|
#undef FA_TYPES
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
|
2024-07-13 17:32:33 +02:00
|
|
|
template<typename T0, typename T1>
|
|
|
|
kernel void kernel_cpy(
|
|
|
|
device const void * src0,
|
|
|
|
device void * dst,
|
2023-06-04 22:34:30 +02:00
|
|
|
constant int64_t & ne00,
|
|
|
|
constant int64_t & ne01,
|
|
|
|
constant int64_t & ne02,
|
|
|
|
constant int64_t & ne03,
|
|
|
|
constant uint64_t & nb00,
|
|
|
|
constant uint64_t & nb01,
|
|
|
|
constant uint64_t & nb02,
|
|
|
|
constant uint64_t & nb03,
|
|
|
|
constant int64_t & ne0,
|
|
|
|
constant int64_t & ne1,
|
|
|
|
constant int64_t & ne2,
|
|
|
|
constant int64_t & ne3,
|
|
|
|
constant uint64_t & nb0,
|
|
|
|
constant uint64_t & nb1,
|
|
|
|
constant uint64_t & nb2,
|
|
|
|
constant uint64_t & nb3,
|
|
|
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
|
|
|
uint3 tpitg[[thread_position_in_threadgroup]],
|
|
|
|
uint3 ntg[[threads_per_threadgroup]]) {
|
|
|
|
const int64_t i03 = tgpig[2];
|
|
|
|
const int64_t i02 = tgpig[1];
|
|
|
|
const int64_t i01 = tgpig[0];
|
|
|
|
|
|
|
|
const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
|
|
|
|
|
|
|
|
const int64_t i3 = n / (ne2*ne1*ne0);
|
|
|
|
const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
|
|
|
|
const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
|
|
|
|
const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
|
|
|
|
|
2024-07-13 17:32:33 +02:00
|
|
|
device T1 * dst_data = (device T1 *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
2023-06-04 22:34:30 +02:00
|
|
|
|
|
|
|
for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
|
2024-07-13 17:32:33 +02:00
|
|
|
device const T0 * src = (device T0 *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
|
|
|
|
dst_data[i00] = (T1) src[0];
|
2023-06-04 22:34:30 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2024-07-13 17:32:33 +02:00
|
|
|
typedef decltype(kernel_cpy<float, float>) kernel_cpy_t;
|
2023-06-04 22:34:30 +02:00
|
|
|
|
2024-11-06 18:53:51 +01:00
|
|
|
template [[host_name("kernel_cpy_f32_f32")]] kernel kernel_cpy_t kernel_cpy<float, float>;
|
|
|
|
template [[host_name("kernel_cpy_f32_f16")]] kernel kernel_cpy_t kernel_cpy<float, half>;
|
2024-11-08 20:59:46 +01:00
|
|
|
#if defined(GGML_METAL_USE_BF16)
|
2024-11-06 18:53:51 +01:00
|
|
|
template [[host_name("kernel_cpy_f32_bf16")]] kernel kernel_cpy_t kernel_cpy<float, bfloat>;
|
|
|
|
#endif
|
|
|
|
template [[host_name("kernel_cpy_f16_f32")]] kernel kernel_cpy_t kernel_cpy<half, float>;
|
|
|
|
template [[host_name("kernel_cpy_f16_f16")]] kernel kernel_cpy_t kernel_cpy<half, half>;
|
2024-11-08 20:59:46 +01:00
|
|
|
#if defined(GGML_METAL_USE_BF16)
|
2024-11-06 18:53:51 +01:00
|
|
|
template [[host_name("kernel_cpy_bf16_f32")]] kernel kernel_cpy_t kernel_cpy<bfloat, float>;
|
|
|
|
template [[host_name("kernel_cpy_bf16_bf16")]] kernel kernel_cpy_t kernel_cpy<bfloat, bfloat>;
|
|
|
|
#endif
|
2023-06-08 09:08:23 +02:00
|
|
|
|
2023-12-07 12:03:17 +01:00
|
|
|
kernel void kernel_cpy_f32_q8_0(
|
|
|
|
device const float * src0,
|
|
|
|
device void * dst,
|
|
|
|
constant int64_t & ne00,
|
|
|
|
constant int64_t & ne01,
|
|
|
|
constant int64_t & ne02,
|
|
|
|
constant int64_t & ne03,
|
|
|
|
constant uint64_t & nb00,
|
|
|
|
constant uint64_t & nb01,
|
|
|
|
constant uint64_t & nb02,
|
|
|
|
constant uint64_t & nb03,
|
|
|
|
constant int64_t & ne0,
|
|
|
|
constant int64_t & ne1,
|
|
|
|
constant int64_t & ne2,
|
|
|
|
constant int64_t & ne3,
|
|
|
|
constant uint64_t & nb0,
|
|
|
|
constant uint64_t & nb1,
|
|
|
|
constant uint64_t & nb2,
|
|
|
|
constant uint64_t & nb3,
|
|
|
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
|
|
|
uint3 tpitg[[thread_position_in_threadgroup]],
|
|
|
|
uint3 ntg[[threads_per_threadgroup]]) {
|
|
|
|
const int64_t i03 = tgpig[2];
|
|
|
|
const int64_t i02 = tgpig[1];
|
|
|
|
const int64_t i01 = tgpig[0];
|
|
|
|
|
|
|
|
const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
|
|
|
|
|
|
|
|
const int64_t i3 = n / (ne2*ne1*ne0);
|
|
|
|
const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
|
|
|
|
const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
|
|
|
|
const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0)/QK8_0;
|
|
|
|
|
|
|
|
device block_q8_0 * dst_data = (device block_q8_0 *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
|
|
|
|
|
|
|
for (int64_t i00 = tpitg.x*QK8_0; i00 < ne00; i00 += ntg.x*QK8_0) {
|
|
|
|
device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
|
|
|
|
|
|
|
|
float amax = 0.0f; // absolute max
|
|
|
|
|
|
|
|
for (int j = 0; j < QK8_0; j++) {
|
|
|
|
const float v = src[j];
|
|
|
|
amax = MAX(amax, fabs(v));
|
|
|
|
}
|
|
|
|
|
|
|
|
const float d = amax / ((1 << 7) - 1);
|
|
|
|
const float id = d ? 1.0f/d : 0.0f;
|
|
|
|
|
|
|
|
dst_data[i00/QK8_0].d = d;
|
|
|
|
|
|
|
|
for (int j = 0; j < QK8_0; ++j) {
|
|
|
|
const float x0 = src[j]*id;
|
|
|
|
|
|
|
|
dst_data[i00/QK8_0].qs[j] = round(x0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
kernel void kernel_cpy_f32_q4_0(
|
|
|
|
device const float * src0,
|
|
|
|
device void * dst,
|
|
|
|
constant int64_t & ne00,
|
|
|
|
constant int64_t & ne01,
|
|
|
|
constant int64_t & ne02,
|
|
|
|
constant int64_t & ne03,
|
|
|
|
constant uint64_t & nb00,
|
|
|
|
constant uint64_t & nb01,
|
|
|
|
constant uint64_t & nb02,
|
|
|
|
constant uint64_t & nb03,
|
|
|
|
constant int64_t & ne0,
|
|
|
|
constant int64_t & ne1,
|
|
|
|
constant int64_t & ne2,
|
|
|
|
constant int64_t & ne3,
|
|
|
|
constant uint64_t & nb0,
|
|
|
|
constant uint64_t & nb1,
|
|
|
|
constant uint64_t & nb2,
|
|
|
|
constant uint64_t & nb3,
|
|
|
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
|
|
|
uint3 tpitg[[thread_position_in_threadgroup]],
|
|
|
|
uint3 ntg[[threads_per_threadgroup]]) {
|
|
|
|
const int64_t i03 = tgpig[2];
|
|
|
|
const int64_t i02 = tgpig[1];
|
|
|
|
const int64_t i01 = tgpig[0];
|
|
|
|
|
|
|
|
const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
|
|
|
|
|
|
|
|
const int64_t i3 = n / (ne2*ne1*ne0);
|
|
|
|
const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
|
|
|
|
const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
|
|
|
|
const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0)/QK4_0;
|
|
|
|
|
|
|
|
device block_q4_0 * dst_data = (device block_q4_0 *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
|
|
|
|
|
|
|
for (int64_t i00 = tpitg.x*QK4_0; i00 < ne00; i00 += ntg.x*QK4_0) {
|
|
|
|
device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
|
|
|
|
|
|
|
|
float amax = 0.0f; // absolute max
|
|
|
|
float max = 0.0f;
|
|
|
|
|
|
|
|
for (int j = 0; j < QK4_0; j++) {
|
|
|
|
const float v = src[j];
|
|
|
|
if (amax < fabs(v)) {
|
|
|
|
amax = fabs(v);
|
|
|
|
max = v;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
const float d = max / -8;
|
|
|
|
const float id = d ? 1.0f/d : 0.0f;
|
|
|
|
|
|
|
|
dst_data[i00/QK4_0].d = d;
|
|
|
|
|
|
|
|
for (int j = 0; j < QK4_0/2; ++j) {
|
|
|
|
const float x0 = src[0 + j]*id;
|
|
|
|
const float x1 = src[QK4_0/2 + j]*id;
|
|
|
|
|
|
|
|
const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
|
|
|
|
const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
|
|
|
|
|
|
|
|
dst_data[i00/QK4_0].qs[j] = xi0;
|
|
|
|
dst_data[i00/QK4_0].qs[j] |= xi1 << 4;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
kernel void kernel_cpy_f32_q4_1(
|
|
|
|
device const float * src0,
|
|
|
|
device void * dst,
|
|
|
|
constant int64_t & ne00,
|
|
|
|
constant int64_t & ne01,
|
|
|
|
constant int64_t & ne02,
|
|
|
|
constant int64_t & ne03,
|
|
|
|
constant uint64_t & nb00,
|
|
|
|
constant uint64_t & nb01,
|
|
|
|
constant uint64_t & nb02,
|
|
|
|
constant uint64_t & nb03,
|
|
|
|
constant int64_t & ne0,
|
|
|
|
constant int64_t & ne1,
|
|
|
|
constant int64_t & ne2,
|
|
|
|
constant int64_t & ne3,
|
|
|
|
constant uint64_t & nb0,
|
|
|
|
constant uint64_t & nb1,
|
|
|
|
constant uint64_t & nb2,
|
|
|
|
constant uint64_t & nb3,
|
|
|
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
|
|
|
uint3 tpitg[[thread_position_in_threadgroup]],
|
|
|
|
uint3 ntg[[threads_per_threadgroup]]) {
|
|
|
|
const int64_t i03 = tgpig[2];
|
|
|
|
const int64_t i02 = tgpig[1];
|
|
|
|
const int64_t i01 = tgpig[0];
|
|
|
|
|
|
|
|
const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
|
|
|
|
|
|
|
|
const int64_t i3 = n / (ne2*ne1*ne0);
|
|
|
|
const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
|
|
|
|
const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
|
|
|
|
const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0)/QK4_1;
|
|
|
|
|
|
|
|
device block_q4_1 * dst_data = (device block_q4_1 *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
|
|
|
|
|
|
|
for (int64_t i00 = tpitg.x*QK4_1; i00 < ne00; i00 += ntg.x*QK4_1) {
|
|
|
|
device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
|
|
|
|
|
|
|
|
float min = FLT_MAX;
|
|
|
|
float max = -FLT_MAX;
|
|
|
|
|
|
|
|
for (int j = 0; j < QK4_1; j++) {
|
|
|
|
const float v = src[j];
|
|
|
|
if (min > v) min = v;
|
|
|
|
if (max < v) max = v;
|
|
|
|
}
|
|
|
|
|
|
|
|
const float d = (max - min) / ((1 << 4) - 1);
|
|
|
|
const float id = d ? 1.0f/d : 0.0f;
|
|
|
|
|
|
|
|
dst_data[i00/QK4_1].d = d;
|
|
|
|
dst_data[i00/QK4_1].m = min;
|
|
|
|
|
|
|
|
for (int j = 0; j < QK4_1/2; ++j) {
|
|
|
|
const float x0 = (src[0 + j] - min)*id;
|
|
|
|
const float x1 = (src[QK4_1/2 + j] - min)*id;
|
|
|
|
|
|
|
|
const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
|
|
|
|
const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
|
|
|
|
|
|
|
|
dst_data[i00/QK4_1].qs[j] = xi0;
|
|
|
|
dst_data[i00/QK4_1].qs[j] |= xi1 << 4;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2024-03-21 08:27:57 +01:00
|
|
|
kernel void kernel_cpy_f32_q5_0(
|
|
|
|
device const float * src0,
|
|
|
|
device void * dst,
|
|
|
|
constant int64_t & ne00,
|
|
|
|
constant int64_t & ne01,
|
|
|
|
constant int64_t & ne02,
|
|
|
|
constant int64_t & ne03,
|
|
|
|
constant uint64_t & nb00,
|
|
|
|
constant uint64_t & nb01,
|
|
|
|
constant uint64_t & nb02,
|
|
|
|
constant uint64_t & nb03,
|
|
|
|
constant int64_t & ne0,
|
|
|
|
constant int64_t & ne1,
|
|
|
|
constant int64_t & ne2,
|
|
|
|
constant int64_t & ne3,
|
|
|
|
constant uint64_t & nb0,
|
|
|
|
constant uint64_t & nb1,
|
|
|
|
constant uint64_t & nb2,
|
|
|
|
constant uint64_t & nb3,
|
|
|
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
|
|
|
uint3 tpitg[[thread_position_in_threadgroup]],
|
|
|
|
uint3 ntg[[threads_per_threadgroup]]) {
|
|
|
|
const int64_t i03 = tgpig[2];
|
|
|
|
const int64_t i02 = tgpig[1];
|
|
|
|
const int64_t i01 = tgpig[0];
|
|
|
|
|
|
|
|
const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
|
|
|
|
|
|
|
|
const int64_t i3 = n / (ne2*ne1*ne0);
|
|
|
|
const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
|
|
|
|
const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
|
|
|
|
const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0)/QK5_0;
|
|
|
|
|
|
|
|
device block_q5_0 * dst_data = (device block_q5_0 *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
|
|
|
|
|
|
|
for (int64_t i00 = tpitg.x*QK5_0; i00 < ne00; i00 += ntg.x*QK5_0) {
|
|
|
|
device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
|
|
|
|
|
|
|
|
float amax = 0.0f; // absolute max
|
|
|
|
float max = 0.0f;
|
|
|
|
|
|
|
|
for (int j = 0; j < QK5_0; j++) {
|
|
|
|
const float v = src[j];
|
|
|
|
if (amax < fabs(v)) {
|
|
|
|
amax = fabs(v);
|
|
|
|
max = v;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
const float d = max / -16;
|
|
|
|
const float id = d ? 1.0f/d : 0.0f;
|
|
|
|
|
|
|
|
dst_data[i00/QK5_0].d = d;
|
|
|
|
|
|
|
|
uint32_t qh = 0;
|
|
|
|
for (int j = 0; j < QK5_0/2; ++j) {
|
|
|
|
const float x0 = src[0 + j]*id;
|
|
|
|
const float x1 = src[QK5_0/2 + j]*id;
|
|
|
|
|
|
|
|
const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
|
|
|
|
const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
|
|
|
|
|
|
|
|
dst_data[i00/QK5_0].qs[j] = (xi0 & 0xf) | ((xi1 & 0xf) << 4);
|
|
|
|
qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
|
|
|
|
qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0/2);
|
|
|
|
}
|
|
|
|
thread const uint8_t * qh8 = (thread const uint8_t *)&qh;
|
|
|
|
for (int j = 0; j < 4; ++j) {
|
|
|
|
dst_data[i00/QK5_0].qh[j] = qh8[j];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
kernel void kernel_cpy_f32_q5_1(
|
|
|
|
device const float * src0,
|
|
|
|
device void * dst,
|
|
|
|
constant int64_t & ne00,
|
|
|
|
constant int64_t & ne01,
|
|
|
|
constant int64_t & ne02,
|
|
|
|
constant int64_t & ne03,
|
|
|
|
constant uint64_t & nb00,
|
|
|
|
constant uint64_t & nb01,
|
|
|
|
constant uint64_t & nb02,
|
|
|
|
constant uint64_t & nb03,
|
|
|
|
constant int64_t & ne0,
|
|
|
|
constant int64_t & ne1,
|
|
|
|
constant int64_t & ne2,
|
|
|
|
constant int64_t & ne3,
|
|
|
|
constant uint64_t & nb0,
|
|
|
|
constant uint64_t & nb1,
|
|
|
|
constant uint64_t & nb2,
|
|
|
|
constant uint64_t & nb3,
|
|
|
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
|
|
|
uint3 tpitg[[thread_position_in_threadgroup]],
|
|
|
|
uint3 ntg[[threads_per_threadgroup]]) {
|
|
|
|
const int64_t i03 = tgpig[2];
|
|
|
|
const int64_t i02 = tgpig[1];
|
|
|
|
const int64_t i01 = tgpig[0];
|
|
|
|
|
|
|
|
const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
|
|
|
|
|
|
|
|
const int64_t i3 = n / (ne2*ne1*ne0);
|
|
|
|
const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
|
|
|
|
const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
|
|
|
|
const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0)/QK5_1;
|
|
|
|
|
|
|
|
device block_q5_1 * dst_data = (device block_q5_1 *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
|
|
|
|
|
|
|
for (int64_t i00 = tpitg.x*QK5_1; i00 < ne00; i00 += ntg.x*QK5_1) {
|
|
|
|
device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
|
|
|
|
|
|
|
|
float max = src[0];
|
|
|
|
float min = src[0];
|
|
|
|
|
|
|
|
for (int j = 1; j < QK5_1; j++) {
|
|
|
|
const float v = src[j];
|
|
|
|
min = v < min ? v : min;
|
|
|
|
max = v > max ? v : max;
|
|
|
|
}
|
|
|
|
|
|
|
|
const float d = (max - min) / 31;
|
|
|
|
const float id = d ? 1.0f/d : 0.0f;
|
|
|
|
|
|
|
|
dst_data[i00/QK5_1].d = d;
|
|
|
|
dst_data[i00/QK5_1].m = min;
|
|
|
|
|
|
|
|
uint32_t qh = 0;
|
|
|
|
for (int j = 0; j < QK5_1/2; ++j) {
|
|
|
|
const float x0 = (src[0 + j] - min)*id;
|
|
|
|
const float x1 = (src[QK5_1/2 + j] - min)*id;
|
|
|
|
|
|
|
|
const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
|
|
|
|
const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
|
|
|
|
|
|
|
|
dst_data[i00/QK5_1].qs[j] = (xi0 & 0xf) | ((xi1 & 0xf) << 4);
|
|
|
|
qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
|
|
|
|
qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_1/2);
|
|
|
|
}
|
|
|
|
thread const uint8_t * qh8 = (thread const uint8_t *)&qh;
|
|
|
|
for (int j = 0; j < 4; ++j) {
|
|
|
|
dst_data[i00/QK5_1].qh[j] = qh8[j];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int best_index_int8(int n, constant float * val, float x) {
|
|
|
|
if (x <= val[0]) return 0;
|
|
|
|
if (x >= val[n-1]) return n-1;
|
|
|
|
int ml = 0, mu = n-1;
|
|
|
|
while (mu-ml > 1) {
|
|
|
|
int mav = (ml+mu)/2;
|
|
|
|
if (x < val[mav]) mu = mav; else ml = mav;
|
|
|
|
}
|
|
|
|
return x - val[mu-1] < val[mu] - x ? mu-1 : mu;
|
|
|
|
}
|
|
|
|
|
|
|
|
kernel void kernel_cpy_f32_iq4_nl(
|
|
|
|
device const float * src0,
|
|
|
|
device void * dst,
|
|
|
|
constant int64_t & ne00,
|
|
|
|
constant int64_t & ne01,
|
|
|
|
constant int64_t & ne02,
|
|
|
|
constant int64_t & ne03,
|
|
|
|
constant uint64_t & nb00,
|
|
|
|
constant uint64_t & nb01,
|
|
|
|
constant uint64_t & nb02,
|
|
|
|
constant uint64_t & nb03,
|
|
|
|
constant int64_t & ne0,
|
|
|
|
constant int64_t & ne1,
|
|
|
|
constant int64_t & ne2,
|
|
|
|
constant int64_t & ne3,
|
|
|
|
constant uint64_t & nb0,
|
|
|
|
constant uint64_t & nb1,
|
|
|
|
constant uint64_t & nb2,
|
|
|
|
constant uint64_t & nb3,
|
|
|
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
|
|
|
uint3 tpitg[[thread_position_in_threadgroup]],
|
|
|
|
uint3 ntg[[threads_per_threadgroup]]) {
|
|
|
|
const int64_t i03 = tgpig[2];
|
|
|
|
const int64_t i02 = tgpig[1];
|
|
|
|
const int64_t i01 = tgpig[0];
|
|
|
|
|
|
|
|
const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
|
|
|
|
|
|
|
|
const int64_t i3 = n / (ne2*ne1*ne0);
|
|
|
|
const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
|
|
|
|
const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
|
|
|
|
const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0)/QK4_NL;
|
|
|
|
|
|
|
|
device block_iq4_nl * dst_data = (device block_iq4_nl *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
|
|
|
|
|
|
|
for (int64_t i00 = tpitg.x*QK4_NL; i00 < ne00; i00 += ntg.x*QK4_NL) {
|
|
|
|
device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
|
|
|
|
|
|
|
|
float amax = 0.0f; // absolute max
|
|
|
|
float max = 0.0f;
|
|
|
|
|
|
|
|
for (int j = 0; j < QK4_0; j++) {
|
|
|
|
const float v = src[j];
|
|
|
|
if (amax < fabs(v)) {
|
|
|
|
amax = fabs(v);
|
|
|
|
max = v;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
const float d = max / kvalues_iq4nl_f[0];
|
|
|
|
const float id = d ? 1.0f/d : 0.0f;
|
|
|
|
|
|
|
|
float sumqx = 0, sumq2 = 0;
|
|
|
|
for (int j = 0; j < QK4_NL/2; ++j) {
|
|
|
|
const float x0 = src[0 + j]*id;
|
|
|
|
const float x1 = src[QK4_NL/2 + j]*id;
|
|
|
|
|
|
|
|
const uint8_t xi0 = best_index_int8(16, kvalues_iq4nl_f, x0);
|
|
|
|
const uint8_t xi1 = best_index_int8(16, kvalues_iq4nl_f, x1);
|
|
|
|
|
|
|
|
dst_data[i00/QK4_NL].qs[j] = xi0 | (xi1 << 4);
|
|
|
|
|
|
|
|
const float v0 = kvalues_iq4nl_f[xi0];
|
|
|
|
const float v1 = kvalues_iq4nl_f[xi1];
|
|
|
|
const float w0 = src[0 + j]*src[0 + j];
|
|
|
|
const float w1 = src[QK4_NL/2 + j]*src[QK4_NL/2 + j];
|
|
|
|
sumqx += w0*v0*src[j] + w1*v1*src[QK4_NL/2 + j];
|
|
|
|
sumq2 += w0*v0*v0 + w1*v1*v1;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
dst_data[i00/QK4_NL].d = sumq2 > 0 ? sumqx/sumq2 : d;
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-10-07 09:12:43 +02:00
|
|
|
kernel void kernel_concat(
|
2023-12-13 20:54:54 +01:00
|
|
|
device const char * src0,
|
|
|
|
device const char * src1,
|
|
|
|
device char * dst,
|
2023-10-07 09:12:43 +02:00
|
|
|
constant int64_t & ne00,
|
|
|
|
constant int64_t & ne01,
|
|
|
|
constant int64_t & ne02,
|
|
|
|
constant int64_t & ne03,
|
|
|
|
constant uint64_t & nb00,
|
|
|
|
constant uint64_t & nb01,
|
|
|
|
constant uint64_t & nb02,
|
|
|
|
constant uint64_t & nb03,
|
|
|
|
constant int64_t & ne10,
|
|
|
|
constant int64_t & ne11,
|
|
|
|
constant int64_t & ne12,
|
|
|
|
constant int64_t & ne13,
|
|
|
|
constant uint64_t & nb10,
|
|
|
|
constant uint64_t & nb11,
|
|
|
|
constant uint64_t & nb12,
|
|
|
|
constant uint64_t & nb13,
|
|
|
|
constant int64_t & ne0,
|
|
|
|
constant int64_t & ne1,
|
|
|
|
constant int64_t & ne2,
|
|
|
|
constant int64_t & ne3,
|
|
|
|
constant uint64_t & nb0,
|
|
|
|
constant uint64_t & nb1,
|
|
|
|
constant uint64_t & nb2,
|
|
|
|
constant uint64_t & nb3,
|
2024-05-28 10:04:19 +02:00
|
|
|
constant int32_t & dim,
|
2023-10-07 09:12:43 +02:00
|
|
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
|
|
|
uint3 tpitg[[thread_position_in_threadgroup]],
|
|
|
|
uint3 ntg[[threads_per_threadgroup]]) {
|
|
|
|
|
2024-05-28 10:04:19 +02:00
|
|
|
const int64_t i3 = tgpig.z;
|
|
|
|
const int64_t i2 = tgpig.y;
|
|
|
|
const int64_t i1 = tgpig.x;
|
2023-10-07 09:12:43 +02:00
|
|
|
|
2024-05-28 10:04:19 +02:00
|
|
|
int64_t o[4] = {0, 0, 0, 0};
|
|
|
|
o[dim] = dim == 0 ? ne00 : (dim == 1 ? ne01 : (dim == 2 ? ne02 : ne03));
|
2023-10-07 09:12:43 +02:00
|
|
|
|
2024-05-28 10:04:19 +02:00
|
|
|
device const float * x;
|
2023-10-07 09:12:43 +02:00
|
|
|
|
|
|
|
for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
|
2024-05-28 10:04:19 +02:00
|
|
|
if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
|
|
|
|
x = (device const float *)(src0 + (i3 )*nb03 + (i2 )*nb02 + (i1 )*nb01 + (i0 )*nb00);
|
2023-10-07 09:12:43 +02:00
|
|
|
} else {
|
2024-05-28 10:04:19 +02:00
|
|
|
x = (device const float *)(src1 + (i3 - o[3])*nb13 + (i2 - o[2])*nb12 + (i1 - o[1])*nb11 + (i0 - o[0])*nb10);
|
2023-10-07 09:12:43 +02:00
|
|
|
}
|
2024-05-28 10:04:19 +02:00
|
|
|
|
|
|
|
device float * y = (device float *)(dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
|
|
|
|
|
|
|
*y = *x;
|
2023-10-07 09:12:43 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-12-13 13:04:25 +01:00
|
|
|
void kernel_mul_mv_q2_K_f32_impl(
|
2023-06-08 21:28:21 +02:00
|
|
|
device const void * src0,
|
|
|
|
device const float * src1,
|
|
|
|
device float * dst,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne00,
|
|
|
|
int64_t ne01,
|
|
|
|
int64_t ne02,
|
2024-10-25 21:26:15 +02:00
|
|
|
uint64_t nb01,
|
|
|
|
uint64_t nb02,
|
|
|
|
uint64_t nb03,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne10,
|
|
|
|
int64_t ne12,
|
2024-10-25 21:26:15 +02:00
|
|
|
uint64_t nb11,
|
|
|
|
uint64_t nb12,
|
|
|
|
uint64_t nb13,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne0,
|
|
|
|
int64_t ne1,
|
|
|
|
uint r2,
|
|
|
|
uint r3,
|
|
|
|
threadgroup int8_t * shared_values,
|
|
|
|
uint3 tgpig,
|
|
|
|
uint tiisg,
|
|
|
|
uint sgitg) {
|
2023-06-08 21:28:21 +02:00
|
|
|
|
|
|
|
const int nb = ne00/QK_K;
|
2023-07-21 09:44:40 +02:00
|
|
|
const int r0 = tgpig.x;
|
|
|
|
const int r1 = tgpig.y;
|
2023-12-07 21:26:54 +01:00
|
|
|
const int im = tgpig.z;
|
2023-06-08 21:28:21 +02:00
|
|
|
|
2023-07-21 09:44:40 +02:00
|
|
|
const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
|
2023-12-07 21:26:54 +01:00
|
|
|
|
|
|
|
const uint i12 = im%ne12;
|
|
|
|
const uint i13 = im/ne12;
|
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
const uint offset0 = first_row*nb01 + (i12/r2)*nb02 + (i13/r3)*nb03;
|
|
|
|
const uint offset1 = r1*nb11 + (i12 )*nb12 + (i13 )*nb13;
|
2023-12-07 21:26:54 +01:00
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
device const block_q2_K * x = (device const block_q2_K *) ((device char *) src0 + offset0);
|
|
|
|
device const float * y = (device const float *) ((device char *) src1 + offset1);
|
2023-12-07 21:26:54 +01:00
|
|
|
|
2023-07-21 09:44:40 +02:00
|
|
|
float yl[32];
|
|
|
|
float sumf[N_DST]={0.f}, all_sum;
|
2023-06-08 21:28:21 +02:00
|
|
|
|
2023-07-21 09:44:40 +02:00
|
|
|
const int ix = tiisg/8; // 0...3
|
|
|
|
const int it = tiisg%8; // 0...7
|
2023-12-07 21:26:54 +01:00
|
|
|
const int iq = it/4; // 0 or 1
|
2023-07-21 09:44:40 +02:00
|
|
|
const int ir = it%4; // 0...3
|
|
|
|
const int is = (8*ir)/16;// 0 or 1
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
device const float * y4 = y + ix * QK_K + 128 * iq + 8 * ir;
|
2023-07-21 09:44:40 +02:00
|
|
|
|
|
|
|
for (int ib = ix; ib < nb; ib += 4) {
|
|
|
|
|
|
|
|
float4 sumy = {0.f, 0.f, 0.f, 0.f};
|
|
|
|
for (int i = 0; i < 8; ++i) {
|
|
|
|
yl[i+ 0] = y4[i+ 0]; sumy[0] += yl[i+ 0];
|
|
|
|
yl[i+ 8] = y4[i+32]; sumy[1] += yl[i+ 8];
|
|
|
|
yl[i+16] = y4[i+64]; sumy[2] += yl[i+16];
|
|
|
|
yl[i+24] = y4[i+96]; sumy[3] += yl[i+24];
|
2023-06-08 21:28:21 +02:00
|
|
|
}
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
device const uint8_t * sc = (device const uint8_t *)x[ib].scales + 8*iq + is;
|
|
|
|
device const uint16_t * qs = (device const uint16_t *)x[ib].qs + 16 * iq + 4 * ir;
|
2023-07-21 09:44:40 +02:00
|
|
|
device const half * dh = &x[ib].d;
|
Metal implementation for all k_quants (#1807)
* metal : improve q4_K
28.3 -> 26.0 ms/token by avoiding a branch in the
calculation of the scales.
* metal : small improvement for Q4_K
* metal : still optimizing Q4_K
This commit pushes it down to 25.3 ms / token.
The crazy idea of using 6 bits for the scales is really costly on
Metal: if I remove the bit fiddling necessary to make the block
scales, time goes almost to the Q4_0 23 ms/token.
Before pushing the k-quants upstream I had a Q4_K variant that
had used 8-bit scales. It wasn't more accurate, used 0.125 bits more per weight,
was running slightly slower on the CPU (due to the larger model size
and being memory bound there), and the difference was entirely
negligible under CUDA. So, I decided to publish the version with 6-bit
scales. Perhaps I should re-consider and change to 8-bit scales?
* metal : some more optimizations
Q2_K: 25.4 ms/token
Q6_K: 27.3 ms/token
Q4_0: 22.8 ms/token
Q4_1: 23.1 ms/token
* metal : Q3_K support
Something is not quite right yet.
* metal : Q5_K support
Initial version achieves 31.2 ms/token, 210 GB/s
* metal : still not able to figure out why q3_K does not work
* Minor
* metal : yet another failed attempt to make q3_K work
* metal : optimize Q5_K
31.2 ms -> 27.8 ms.
250 GB/s.
* metal : q3_K still not working
Adding a heavily commented q3_K metal kernel to explain
my obviously faulty logic. Perhaps someone could spot the issue?
* metal : q3_K finally working
Not optimized at all.
What was the issue? The scales are not 4-bytes aligned,
and I was accessing them with a uint32_t pointer.
When I tried that on CUDA, I got an error (illegal memory access)
and added a memcpy to a local array of 3 uint32_t's.
But on Metal it told me there is no memcpy, so I tried
accessing directly. There is no error, just garbage results.
At some point I did try accessing the scales with an uint16_t
pointer (the scales are for sure 2-byte aligned), but was
still getting garbage. I guess, there must have been another bug.
No access to scales is via a uint16_t pointer and, after starting
from scratch from the C dequantize function, it finally works.
* metal : Q3_K 1st optimization pass
* metal : Q3_K second optimization pass - 29.6 ms/token
* metal : Q3_K cleanup
* metal : fixed accidentally broken Q2_K
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-12 21:39:21 +02:00
|
|
|
|
2023-07-21 09:44:40 +02:00
|
|
|
for (int row = 0; row < N_DST; row++) {
|
2023-06-08 21:28:21 +02:00
|
|
|
|
2023-07-21 09:44:40 +02:00
|
|
|
float4 acc1 = {0.f, 0.f, 0.f, 0.f};
|
|
|
|
float4 acc2 = {0.f, 0.f, 0.f, 0.f};
|
|
|
|
for (int i = 0; i < 8; i += 2) {
|
|
|
|
acc1[0] += yl[i+ 0] * (qs[i/2] & 0x0003);
|
|
|
|
acc2[0] += yl[i+ 1] * (qs[i/2] & 0x0300);
|
|
|
|
acc1[1] += yl[i+ 8] * (qs[i/2] & 0x000c);
|
|
|
|
acc2[1] += yl[i+ 9] * (qs[i/2] & 0x0c00);
|
|
|
|
acc1[2] += yl[i+16] * (qs[i/2] & 0x0030);
|
|
|
|
acc2[2] += yl[i+17] * (qs[i/2] & 0x3000);
|
|
|
|
acc1[3] += yl[i+24] * (qs[i/2] & 0x00c0);
|
|
|
|
acc2[3] += yl[i+25] * (qs[i/2] & 0xc000);
|
|
|
|
}
|
|
|
|
float dall = dh[0];
|
|
|
|
float dmin = dh[1] * 1.f/16.f;
|
|
|
|
sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc2[0]) * (sc[0] & 0xF) * 1.f/ 1.f +
|
|
|
|
(acc1[1] + 1.f/256.f * acc2[1]) * (sc[2] & 0xF) * 1.f/ 4.f +
|
|
|
|
(acc1[2] + 1.f/256.f * acc2[2]) * (sc[4] & 0xF) * 1.f/16.f +
|
|
|
|
(acc1[3] + 1.f/256.f * acc2[3]) * (sc[6] & 0xF) * 1.f/64.f) -
|
|
|
|
dmin * (sumy[0] * (sc[0] & 0xF0) + sumy[1] * (sc[2] & 0xF0) + sumy[2] * (sc[4] & 0xF0) + sumy[3] * (sc[6] & 0xF0));
|
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
qs += nb01/2;
|
|
|
|
sc += nb01;
|
|
|
|
dh += nb01/2;
|
2023-07-21 09:44:40 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
y4 += 4 * QK_K;
|
2023-06-08 21:28:21 +02:00
|
|
|
}
|
k-quants : support for super-block size of 64 (#2001)
* k_quants: WIP super-blocks with 64 weights
* k_quants: WIP super-blocks with 64 weights
Q6_K scalar and AVX2 works
* k_quants: WIP super-blocks with 64 weights
Q4_K scalar and AVX2 works
* k_quants: WIP super-blocks with 64 weights
Q2_K scalar and AVX2 works. Q2_K is way too slow (it is actually slower
than the scalar implementation)
* k_quants: WIP super-blocks with 64 weights
Q3_K scalar and AVX2 works.
* k_quants: WIP super-blocks with 64 weights
Q5_K scalar and AVX2 works, and with that all
k_quants are done on AVX2 and scalar
* k_quants: WIP super-blocks with 64 weights
Q6_K working on CUDA. Cannot make it run quite as gast as
with super-blocks with 256 weigths: 8% slower on 4080,
20% slower on the 1660 (but there we fit 1 less layer on the
GPU because pf the larger model size), so some fraction of
these 20% is due to that,
* k_quants: WIP super-blocks with 64 weights
Q4_K working on CUDA. ~10% slower on GTX-1660,
16% slower on 4080.
* k_quants: WIP super-blocks with 64 weights
Q2_K working on CUDA. ~3% slower on GTX-1660,
10% slower on 4080.
* k_quants: WIP super-blocks with 64 weights
Q3_K working on CUDA.
* k_quants: WIP super-blocks with 64 weights
Q5_K working on CUDA, and with this CUDA is done.
* k_quants: WIP super-blocks with 64 weights
Q6_K working on ARM_NEON
* k_quants: WIP super-blocks with 64 weights
Q4_K working on ARM_NEON, but quite a bit slower than 256 weights
* k_quants: WIP super-blocks with 64 weights
Q2_K working on ARM_NEON, but quite a bit slower than 256 weights
* k_quants: WIP super-blocks with 64 weights
Q3_K working on ARM_NEON, but quite a bit slower than 256 weights.
* k_quants: WIP super-blocks with 64 weights
Q5_K working on ARM_NEON, but quite a bit slower than 256 weights.
With that, we have full support for ARM_NEON, although
performance is not quite there.
* k_quants: WIP super-blocks with 64 weights
Slightly more efficient Q3_K and Q5_K
* k_quants: WIP super-blocks with 64 weights
Another small improvement for Q3_K and Q5_K on ARM_NEON
* k_quants: WIP super-blocks with 64 weights
Yet another speedup for Q5_K on ARM_NEON.
We are now within 10% of the QK_K = 256 version.
* k_quants: WIP super-blocks with 64 weights
* We are able to pass preprocessor macros to the Metal
compiler
* Q6_K works and is actually slightly more efficient than
the QK_K = 256 version (25.2 ms vs 25.8 ms)
* k_quants: WIP super-blocks with 64 weights
Q4_K works on Metal and is actually slightly faster
than QK_K = 256 (21.95 ms vs 24.0 ms).
* k_quants: WIP super-blocks with 64 weights
Q2_K works on Metal and is very slightly faster
than QK_K = 256 (23.8 ms vs 24.2 ms).
* k_quants: WIP super-blocks with 64 weights
Q3_K works on Metal and is slightly faster
than QK_K = 256 (26.6 ms vs 28.3 ms).
* k_quants: WIP super-blocks with 64 weights
Q5_K works on Metal and is slightly faster
than QK_K = 256 (23.7 ms vs 26.3 ms).
* k_quants: call them _K, not _k, also on Metal
* k_quants: correctly define QK_K in llama.cpp
* Fixed bug in q4_K quantization added with the 64-block addition
* Simplify via lambda
* k_quants: swicth Q3_K to 4-bit scales when QK_K = 64
Otherwise there isn't much benefit from this
quantization type. There is some very slight loss
in accuracy, but we reduce size by ~7%.
E.g., for OpenLLaMA-3B, Q3_K_S perplexity is
8.6131 with 8-bit scales and 8.6352 with 4-bit,
while file size decreases from 1.53G to 1.44G.
* k_quants: switch Q4_K to 4-bit scales when QK_K = 64
Here the loss in accuracy is greater than for Q3_K,
but the Q4_K points still move further to the left on
the perplexity vs size curve.
* k_quants: forgot to add the Metal changes in last commit
* k_quants: change Q5_K to be type 0 when QK_K = 64
Still needs AVX2 implementation
* k_quants: AVX2 implementation for new 64-weight Q5_K
* k_quants: 10% faster ARM_NEON Q5_K dot product
* k_quants: fixed issue caused by merging with master
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-26 18:43:07 +02:00
|
|
|
|
2023-07-21 09:44:40 +02:00
|
|
|
for (int row = 0; row < N_DST; ++row) {
|
|
|
|
all_sum = simd_sum(sumf[row]);
|
|
|
|
if (tiisg == 0) {
|
2023-12-07 21:26:54 +01:00
|
|
|
dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum;
|
2023-07-21 09:44:40 +02:00
|
|
|
}
|
2023-06-08 21:28:21 +02:00
|
|
|
}
|
Metal implementation for all k_quants (#1807)
* metal : improve q4_K
28.3 -> 26.0 ms/token by avoiding a branch in the
calculation of the scales.
* metal : small improvement for Q4_K
* metal : still optimizing Q4_K
This commit pushes it down to 25.3 ms / token.
The crazy idea of using 6 bits for the scales is really costly on
Metal: if I remove the bit fiddling necessary to make the block
scales, time goes almost to the Q4_0 23 ms/token.
Before pushing the k-quants upstream I had a Q4_K variant that
had used 8-bit scales. It wasn't more accurate, used 0.125 bits more per weight,
was running slightly slower on the CPU (due to the larger model size
and being memory bound there), and the difference was entirely
negligible under CUDA. So, I decided to publish the version with 6-bit
scales. Perhaps I should re-consider and change to 8-bit scales?
* metal : some more optimizations
Q2_K: 25.4 ms/token
Q6_K: 27.3 ms/token
Q4_0: 22.8 ms/token
Q4_1: 23.1 ms/token
* metal : Q3_K support
Something is not quite right yet.
* metal : Q5_K support
Initial version achieves 31.2 ms/token, 210 GB/s
* metal : still not able to figure out why q3_K does not work
* Minor
* metal : yet another failed attempt to make q3_K work
* metal : optimize Q5_K
31.2 ms -> 27.8 ms.
250 GB/s.
* metal : q3_K still not working
Adding a heavily commented q3_K metal kernel to explain
my obviously faulty logic. Perhaps someone could spot the issue?
* metal : q3_K finally working
Not optimized at all.
What was the issue? The scales are not 4-bytes aligned,
and I was accessing them with a uint32_t pointer.
When I tried that on CUDA, I got an error (illegal memory access)
and added a memcpy to a local array of 3 uint32_t's.
But on Metal it told me there is no memcpy, so I tried
accessing directly. There is no error, just garbage results.
At some point I did try accessing the scales with an uint16_t
pointer (the scales are for sure 2-byte aligned), but was
still getting garbage. I guess, there must have been another bug.
No access to scales is via a uint16_t pointer and, after starting
from scratch from the C dequantize function, it finally works.
* metal : Q3_K 1st optimization pass
* metal : Q3_K second optimization pass - 29.6 ms/token
* metal : Q3_K cleanup
* metal : fixed accidentally broken Q2_K
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-12 21:39:21 +02:00
|
|
|
}
|
2023-06-08 21:28:21 +02:00
|
|
|
|
2023-12-13 13:04:25 +01:00
|
|
|
[[host_name("kernel_mul_mv_q2_K_f32")]]
|
|
|
|
kernel void kernel_mul_mv_q2_K_f32(
|
Metal implementation for all k_quants (#1807)
* metal : improve q4_K
28.3 -> 26.0 ms/token by avoiding a branch in the
calculation of the scales.
* metal : small improvement for Q4_K
* metal : still optimizing Q4_K
This commit pushes it down to 25.3 ms / token.
The crazy idea of using 6 bits for the scales is really costly on
Metal: if I remove the bit fiddling necessary to make the block
scales, time goes almost to the Q4_0 23 ms/token.
Before pushing the k-quants upstream I had a Q4_K variant that
had used 8-bit scales. It wasn't more accurate, used 0.125 bits more per weight,
was running slightly slower on the CPU (due to the larger model size
and being memory bound there), and the difference was entirely
negligible under CUDA. So, I decided to publish the version with 6-bit
scales. Perhaps I should re-consider and change to 8-bit scales?
* metal : some more optimizations
Q2_K: 25.4 ms/token
Q6_K: 27.3 ms/token
Q4_0: 22.8 ms/token
Q4_1: 23.1 ms/token
* metal : Q3_K support
Something is not quite right yet.
* metal : Q5_K support
Initial version achieves 31.2 ms/token, 210 GB/s
* metal : still not able to figure out why q3_K does not work
* Minor
* metal : yet another failed attempt to make q3_K work
* metal : optimize Q5_K
31.2 ms -> 27.8 ms.
250 GB/s.
* metal : q3_K still not working
Adding a heavily commented q3_K metal kernel to explain
my obviously faulty logic. Perhaps someone could spot the issue?
* metal : q3_K finally working
Not optimized at all.
What was the issue? The scales are not 4-bytes aligned,
and I was accessing them with a uint32_t pointer.
When I tried that on CUDA, I got an error (illegal memory access)
and added a memcpy to a local array of 3 uint32_t's.
But on Metal it told me there is no memcpy, so I tried
accessing directly. There is no error, just garbage results.
At some point I did try accessing the scales with an uint16_t
pointer (the scales are for sure 2-byte aligned), but was
still getting garbage. I guess, there must have been another bug.
No access to scales is via a uint16_t pointer and, after starting
from scratch from the C dequantize function, it finally works.
* metal : Q3_K 1st optimization pass
* metal : Q3_K second optimization pass - 29.6 ms/token
* metal : Q3_K cleanup
* metal : fixed accidentally broken Q2_K
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-12 21:39:21 +02:00
|
|
|
device const void * src0,
|
|
|
|
device const float * src1,
|
|
|
|
device float * dst,
|
|
|
|
constant int64_t & ne00,
|
2024-01-02 09:57:44 +01:00
|
|
|
constant int64_t & ne01,
|
|
|
|
constant int64_t & ne02,
|
|
|
|
constant uint64_t & nb00,
|
|
|
|
constant uint64_t & nb01,
|
|
|
|
constant uint64_t & nb02,
|
2024-10-25 21:26:15 +02:00
|
|
|
constant uint64_t & nb03,
|
2024-01-02 09:57:44 +01:00
|
|
|
constant int64_t & ne10,
|
|
|
|
constant int64_t & ne11,
|
|
|
|
constant int64_t & ne12,
|
|
|
|
constant uint64_t & nb10,
|
|
|
|
constant uint64_t & nb11,
|
|
|
|
constant uint64_t & nb12,
|
2024-10-25 21:26:15 +02:00
|
|
|
constant uint64_t & nb13,
|
2024-01-02 09:57:44 +01:00
|
|
|
constant int64_t & ne0,
|
|
|
|
constant int64_t & ne1,
|
|
|
|
constant uint & r2,
|
|
|
|
constant uint & r3,
|
2023-08-16 22:07:04 +02:00
|
|
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
2023-12-13 13:04:25 +01:00
|
|
|
uint tiisg[[thread_index_in_simdgroup]],
|
|
|
|
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
kernel_mul_mv_q2_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, nb01, nb02, nb03, ne10, ne12, nb11, nb12, nb13, ne0, ne1, r2, r3, nullptr, tgpig, tiisg, sgitg);
|
2023-12-13 13:04:25 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
void kernel_mul_mv_q3_K_f32_impl(
|
|
|
|
device const void * src0,
|
|
|
|
device const float * src1,
|
|
|
|
device float * dst,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne00,
|
|
|
|
int64_t ne01,
|
|
|
|
int64_t ne02,
|
2024-10-25 21:26:15 +02:00
|
|
|
uint64_t nb01,
|
|
|
|
uint64_t nb02,
|
|
|
|
uint64_t nb03,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne10,
|
|
|
|
int64_t ne12,
|
2024-10-25 21:26:15 +02:00
|
|
|
uint64_t nb11,
|
|
|
|
uint64_t nb12,
|
|
|
|
uint64_t nb13,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne0,
|
|
|
|
int64_t ne1,
|
|
|
|
uint r2,
|
|
|
|
uint r3,
|
|
|
|
threadgroup int8_t * shared_values,
|
|
|
|
uint3 tgpig,
|
|
|
|
uint tiisg,
|
|
|
|
uint sgitg) {
|
Metal implementation for all k_quants (#1807)
* metal : improve q4_K
28.3 -> 26.0 ms/token by avoiding a branch in the
calculation of the scales.
* metal : small improvement for Q4_K
* metal : still optimizing Q4_K
This commit pushes it down to 25.3 ms / token.
The crazy idea of using 6 bits for the scales is really costly on
Metal: if I remove the bit fiddling necessary to make the block
scales, time goes almost to the Q4_0 23 ms/token.
Before pushing the k-quants upstream I had a Q4_K variant that
had used 8-bit scales. It wasn't more accurate, used 0.125 bits more per weight,
was running slightly slower on the CPU (due to the larger model size
and being memory bound there), and the difference was entirely
negligible under CUDA. So, I decided to publish the version with 6-bit
scales. Perhaps I should re-consider and change to 8-bit scales?
* metal : some more optimizations
Q2_K: 25.4 ms/token
Q6_K: 27.3 ms/token
Q4_0: 22.8 ms/token
Q4_1: 23.1 ms/token
* metal : Q3_K support
Something is not quite right yet.
* metal : Q5_K support
Initial version achieves 31.2 ms/token, 210 GB/s
* metal : still not able to figure out why q3_K does not work
* Minor
* metal : yet another failed attempt to make q3_K work
* metal : optimize Q5_K
31.2 ms -> 27.8 ms.
250 GB/s.
* metal : q3_K still not working
Adding a heavily commented q3_K metal kernel to explain
my obviously faulty logic. Perhaps someone could spot the issue?
* metal : q3_K finally working
Not optimized at all.
What was the issue? The scales are not 4-bytes aligned,
and I was accessing them with a uint32_t pointer.
When I tried that on CUDA, I got an error (illegal memory access)
and added a memcpy to a local array of 3 uint32_t's.
But on Metal it told me there is no memcpy, so I tried
accessing directly. There is no error, just garbage results.
At some point I did try accessing the scales with an uint16_t
pointer (the scales are for sure 2-byte aligned), but was
still getting garbage. I guess, there must have been another bug.
No access to scales is via a uint16_t pointer and, after starting
from scratch from the C dequantize function, it finally works.
* metal : Q3_K 1st optimization pass
* metal : Q3_K second optimization pass - 29.6 ms/token
* metal : Q3_K cleanup
* metal : fixed accidentally broken Q2_K
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-12 21:39:21 +02:00
|
|
|
|
|
|
|
const int nb = ne00/QK_K;
|
|
|
|
|
|
|
|
const int64_t r0 = tgpig.x;
|
|
|
|
const int64_t r1 = tgpig.y;
|
2023-12-07 21:26:54 +01:00
|
|
|
const int64_t im = tgpig.z;
|
Metal implementation for all k_quants (#1807)
* metal : improve q4_K
28.3 -> 26.0 ms/token by avoiding a branch in the
calculation of the scales.
* metal : small improvement for Q4_K
* metal : still optimizing Q4_K
This commit pushes it down to 25.3 ms / token.
The crazy idea of using 6 bits for the scales is really costly on
Metal: if I remove the bit fiddling necessary to make the block
scales, time goes almost to the Q4_0 23 ms/token.
Before pushing the k-quants upstream I had a Q4_K variant that
had used 8-bit scales. It wasn't more accurate, used 0.125 bits more per weight,
was running slightly slower on the CPU (due to the larger model size
and being memory bound there), and the difference was entirely
negligible under CUDA. So, I decided to publish the version with 6-bit
scales. Perhaps I should re-consider and change to 8-bit scales?
* metal : some more optimizations
Q2_K: 25.4 ms/token
Q6_K: 27.3 ms/token
Q4_0: 22.8 ms/token
Q4_1: 23.1 ms/token
* metal : Q3_K support
Something is not quite right yet.
* metal : Q5_K support
Initial version achieves 31.2 ms/token, 210 GB/s
* metal : still not able to figure out why q3_K does not work
* Minor
* metal : yet another failed attempt to make q3_K work
* metal : optimize Q5_K
31.2 ms -> 27.8 ms.
250 GB/s.
* metal : q3_K still not working
Adding a heavily commented q3_K metal kernel to explain
my obviously faulty logic. Perhaps someone could spot the issue?
* metal : q3_K finally working
Not optimized at all.
What was the issue? The scales are not 4-bytes aligned,
and I was accessing them with a uint32_t pointer.
When I tried that on CUDA, I got an error (illegal memory access)
and added a memcpy to a local array of 3 uint32_t's.
But on Metal it told me there is no memcpy, so I tried
accessing directly. There is no error, just garbage results.
At some point I did try accessing the scales with an uint16_t
pointer (the scales are for sure 2-byte aligned), but was
still getting garbage. I guess, there must have been another bug.
No access to scales is via a uint16_t pointer and, after starting
from scratch from the C dequantize function, it finally works.
* metal : Q3_K 1st optimization pass
* metal : Q3_K second optimization pass - 29.6 ms/token
* metal : Q3_K cleanup
* metal : fixed accidentally broken Q2_K
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-12 21:39:21 +02:00
|
|
|
|
2023-07-21 16:05:30 +02:00
|
|
|
const int first_row = (r0 * N_SIMDGROUP + sgitg) * 2;
|
2023-12-07 21:26:54 +01:00
|
|
|
|
|
|
|
const uint i12 = im%ne12;
|
|
|
|
const uint i13 = im/ne12;
|
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
const uint offset0 = first_row*nb01 + (i12/r2)*nb02 + (i13/r3)*nb03;
|
|
|
|
const uint offset1 = r1*nb11 + (i12 )*nb12 + (i13 )*nb13;
|
2023-12-07 21:26:54 +01:00
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
device const block_q3_K * x = (device const block_q3_K *) ((device char *) src0 + offset0);
|
|
|
|
device const float * yy = (device const float *) ((device char *) src1 + offset1);
|
k-quants : support for super-block size of 64 (#2001)
* k_quants: WIP super-blocks with 64 weights
* k_quants: WIP super-blocks with 64 weights
Q6_K scalar and AVX2 works
* k_quants: WIP super-blocks with 64 weights
Q4_K scalar and AVX2 works
* k_quants: WIP super-blocks with 64 weights
Q2_K scalar and AVX2 works. Q2_K is way too slow (it is actually slower
than the scalar implementation)
* k_quants: WIP super-blocks with 64 weights
Q3_K scalar and AVX2 works.
* k_quants: WIP super-blocks with 64 weights
Q5_K scalar and AVX2 works, and with that all
k_quants are done on AVX2 and scalar
* k_quants: WIP super-blocks with 64 weights
Q6_K working on CUDA. Cannot make it run quite as gast as
with super-blocks with 256 weigths: 8% slower on 4080,
20% slower on the 1660 (but there we fit 1 less layer on the
GPU because pf the larger model size), so some fraction of
these 20% is due to that,
* k_quants: WIP super-blocks with 64 weights
Q4_K working on CUDA. ~10% slower on GTX-1660,
16% slower on 4080.
* k_quants: WIP super-blocks with 64 weights
Q2_K working on CUDA. ~3% slower on GTX-1660,
10% slower on 4080.
* k_quants: WIP super-blocks with 64 weights
Q3_K working on CUDA.
* k_quants: WIP super-blocks with 64 weights
Q5_K working on CUDA, and with this CUDA is done.
* k_quants: WIP super-blocks with 64 weights
Q6_K working on ARM_NEON
* k_quants: WIP super-blocks with 64 weights
Q4_K working on ARM_NEON, but quite a bit slower than 256 weights
* k_quants: WIP super-blocks with 64 weights
Q2_K working on ARM_NEON, but quite a bit slower than 256 weights
* k_quants: WIP super-blocks with 64 weights
Q3_K working on ARM_NEON, but quite a bit slower than 256 weights.
* k_quants: WIP super-blocks with 64 weights
Q5_K working on ARM_NEON, but quite a bit slower than 256 weights.
With that, we have full support for ARM_NEON, although
performance is not quite there.
* k_quants: WIP super-blocks with 64 weights
Slightly more efficient Q3_K and Q5_K
* k_quants: WIP super-blocks with 64 weights
Another small improvement for Q3_K and Q5_K on ARM_NEON
* k_quants: WIP super-blocks with 64 weights
Yet another speedup for Q5_K on ARM_NEON.
We are now within 10% of the QK_K = 256 version.
* k_quants: WIP super-blocks with 64 weights
* We are able to pass preprocessor macros to the Metal
compiler
* Q6_K works and is actually slightly more efficient than
the QK_K = 256 version (25.2 ms vs 25.8 ms)
* k_quants: WIP super-blocks with 64 weights
Q4_K works on Metal and is actually slightly faster
than QK_K = 256 (21.95 ms vs 24.0 ms).
* k_quants: WIP super-blocks with 64 weights
Q2_K works on Metal and is very slightly faster
than QK_K = 256 (23.8 ms vs 24.2 ms).
* k_quants: WIP super-blocks with 64 weights
Q3_K works on Metal and is slightly faster
than QK_K = 256 (26.6 ms vs 28.3 ms).
* k_quants: WIP super-blocks with 64 weights
Q5_K works on Metal and is slightly faster
than QK_K = 256 (23.7 ms vs 26.3 ms).
* k_quants: call them _K, not _k, also on Metal
* k_quants: correctly define QK_K in llama.cpp
* Fixed bug in q4_K quantization added with the 64-block addition
* Simplify via lambda
* k_quants: swicth Q3_K to 4-bit scales when QK_K = 64
Otherwise there isn't much benefit from this
quantization type. There is some very slight loss
in accuracy, but we reduce size by ~7%.
E.g., for OpenLLaMA-3B, Q3_K_S perplexity is
8.6131 with 8-bit scales and 8.6352 with 4-bit,
while file size decreases from 1.53G to 1.44G.
* k_quants: switch Q4_K to 4-bit scales when QK_K = 64
Here the loss in accuracy is greater than for Q3_K,
but the Q4_K points still move further to the left on
the perplexity vs size curve.
* k_quants: forgot to add the Metal changes in last commit
* k_quants: change Q5_K to be type 0 when QK_K = 64
Still needs AVX2 implementation
* k_quants: AVX2 implementation for new 64-weight Q5_K
* k_quants: 10% faster ARM_NEON Q5_K dot product
* k_quants: fixed issue caused by merging with master
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-26 18:43:07 +02:00
|
|
|
|
2023-09-08 18:01:04 +02:00
|
|
|
float yl[32];
|
k-quants : support for super-block size of 64 (#2001)
* k_quants: WIP super-blocks with 64 weights
* k_quants: WIP super-blocks with 64 weights
Q6_K scalar and AVX2 works
* k_quants: WIP super-blocks with 64 weights
Q4_K scalar and AVX2 works
* k_quants: WIP super-blocks with 64 weights
Q2_K scalar and AVX2 works. Q2_K is way too slow (it is actually slower
than the scalar implementation)
* k_quants: WIP super-blocks with 64 weights
Q3_K scalar and AVX2 works.
* k_quants: WIP super-blocks with 64 weights
Q5_K scalar and AVX2 works, and with that all
k_quants are done on AVX2 and scalar
* k_quants: WIP super-blocks with 64 weights
Q6_K working on CUDA. Cannot make it run quite as gast as
with super-blocks with 256 weigths: 8% slower on 4080,
20% slower on the 1660 (but there we fit 1 less layer on the
GPU because pf the larger model size), so some fraction of
these 20% is due to that,
* k_quants: WIP super-blocks with 64 weights
Q4_K working on CUDA. ~10% slower on GTX-1660,
16% slower on 4080.
* k_quants: WIP super-blocks with 64 weights
Q2_K working on CUDA. ~3% slower on GTX-1660,
10% slower on 4080.
* k_quants: WIP super-blocks with 64 weights
Q3_K working on CUDA.
* k_quants: WIP super-blocks with 64 weights
Q5_K working on CUDA, and with this CUDA is done.
* k_quants: WIP super-blocks with 64 weights
Q6_K working on ARM_NEON
* k_quants: WIP super-blocks with 64 weights
Q4_K working on ARM_NEON, but quite a bit slower than 256 weights
* k_quants: WIP super-blocks with 64 weights
Q2_K working on ARM_NEON, but quite a bit slower than 256 weights
* k_quants: WIP super-blocks with 64 weights
Q3_K working on ARM_NEON, but quite a bit slower than 256 weights.
* k_quants: WIP super-blocks with 64 weights
Q5_K working on ARM_NEON, but quite a bit slower than 256 weights.
With that, we have full support for ARM_NEON, although
performance is not quite there.
* k_quants: WIP super-blocks with 64 weights
Slightly more efficient Q3_K and Q5_K
* k_quants: WIP super-blocks with 64 weights
Another small improvement for Q3_K and Q5_K on ARM_NEON
* k_quants: WIP super-blocks with 64 weights
Yet another speedup for Q5_K on ARM_NEON.
We are now within 10% of the QK_K = 256 version.
* k_quants: WIP super-blocks with 64 weights
* We are able to pass preprocessor macros to the Metal
compiler
* Q6_K works and is actually slightly more efficient than
the QK_K = 256 version (25.2 ms vs 25.8 ms)
* k_quants: WIP super-blocks with 64 weights
Q4_K works on Metal and is actually slightly faster
than QK_K = 256 (21.95 ms vs 24.0 ms).
* k_quants: WIP super-blocks with 64 weights
Q2_K works on Metal and is very slightly faster
than QK_K = 256 (23.8 ms vs 24.2 ms).
* k_quants: WIP super-blocks with 64 weights
Q3_K works on Metal and is slightly faster
than QK_K = 256 (26.6 ms vs 28.3 ms).
* k_quants: WIP super-blocks with 64 weights
Q5_K works on Metal and is slightly faster
than QK_K = 256 (23.7 ms vs 26.3 ms).
* k_quants: call them _K, not _k, also on Metal
* k_quants: correctly define QK_K in llama.cpp
* Fixed bug in q4_K quantization added with the 64-block addition
* Simplify via lambda
* k_quants: swicth Q3_K to 4-bit scales when QK_K = 64
Otherwise there isn't much benefit from this
quantization type. There is some very slight loss
in accuracy, but we reduce size by ~7%.
E.g., for OpenLLaMA-3B, Q3_K_S perplexity is
8.6131 with 8-bit scales and 8.6352 with 4-bit,
while file size decreases from 1.53G to 1.44G.
* k_quants: switch Q4_K to 4-bit scales when QK_K = 64
Here the loss in accuracy is greater than for Q3_K,
but the Q4_K points still move further to the left on
the perplexity vs size curve.
* k_quants: forgot to add the Metal changes in last commit
* k_quants: change Q5_K to be type 0 when QK_K = 64
Still needs AVX2 implementation
* k_quants: AVX2 implementation for new 64-weight Q5_K
* k_quants: 10% faster ARM_NEON Q5_K dot product
* k_quants: fixed issue caused by merging with master
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-26 18:43:07 +02:00
|
|
|
|
2023-09-28 18:04:36 +02:00
|
|
|
//const uint16_t kmask1 = 0x3030;
|
|
|
|
//const uint16_t kmask2 = 0x0f0f;
|
k-quants : support for super-block size of 64 (#2001)
* k_quants: WIP super-blocks with 64 weights
* k_quants: WIP super-blocks with 64 weights
Q6_K scalar and AVX2 works
* k_quants: WIP super-blocks with 64 weights
Q4_K scalar and AVX2 works
* k_quants: WIP super-blocks with 64 weights
Q2_K scalar and AVX2 works. Q2_K is way too slow (it is actually slower
than the scalar implementation)
* k_quants: WIP super-blocks with 64 weights
Q3_K scalar and AVX2 works.
* k_quants: WIP super-blocks with 64 weights
Q5_K scalar and AVX2 works, and with that all
k_quants are done on AVX2 and scalar
* k_quants: WIP super-blocks with 64 weights
Q6_K working on CUDA. Cannot make it run quite as gast as
with super-blocks with 256 weigths: 8% slower on 4080,
20% slower on the 1660 (but there we fit 1 less layer on the
GPU because pf the larger model size), so some fraction of
these 20% is due to that,
* k_quants: WIP super-blocks with 64 weights
Q4_K working on CUDA. ~10% slower on GTX-1660,
16% slower on 4080.
* k_quants: WIP super-blocks with 64 weights
Q2_K working on CUDA. ~3% slower on GTX-1660,
10% slower on 4080.
* k_quants: WIP super-blocks with 64 weights
Q3_K working on CUDA.
* k_quants: WIP super-blocks with 64 weights
Q5_K working on CUDA, and with this CUDA is done.
* k_quants: WIP super-blocks with 64 weights
Q6_K working on ARM_NEON
* k_quants: WIP super-blocks with 64 weights
Q4_K working on ARM_NEON, but quite a bit slower than 256 weights
* k_quants: WIP super-blocks with 64 weights
Q2_K working on ARM_NEON, but quite a bit slower than 256 weights
* k_quants: WIP super-blocks with 64 weights
Q3_K working on ARM_NEON, but quite a bit slower than 256 weights.
* k_quants: WIP super-blocks with 64 weights
Q5_K working on ARM_NEON, but quite a bit slower than 256 weights.
With that, we have full support for ARM_NEON, although
performance is not quite there.
* k_quants: WIP super-blocks with 64 weights
Slightly more efficient Q3_K and Q5_K
* k_quants: WIP super-blocks with 64 weights
Another small improvement for Q3_K and Q5_K on ARM_NEON
* k_quants: WIP super-blocks with 64 weights
Yet another speedup for Q5_K on ARM_NEON.
We are now within 10% of the QK_K = 256 version.
* k_quants: WIP super-blocks with 64 weights
* We are able to pass preprocessor macros to the Metal
compiler
* Q6_K works and is actually slightly more efficient than
the QK_K = 256 version (25.2 ms vs 25.8 ms)
* k_quants: WIP super-blocks with 64 weights
Q4_K works on Metal and is actually slightly faster
than QK_K = 256 (21.95 ms vs 24.0 ms).
* k_quants: WIP super-blocks with 64 weights
Q2_K works on Metal and is very slightly faster
than QK_K = 256 (23.8 ms vs 24.2 ms).
* k_quants: WIP super-blocks with 64 weights
Q3_K works on Metal and is slightly faster
than QK_K = 256 (26.6 ms vs 28.3 ms).
* k_quants: WIP super-blocks with 64 weights
Q5_K works on Metal and is slightly faster
than QK_K = 256 (23.7 ms vs 26.3 ms).
* k_quants: call them _K, not _k, also on Metal
* k_quants: correctly define QK_K in llama.cpp
* Fixed bug in q4_K quantization added with the 64-block addition
* Simplify via lambda
* k_quants: swicth Q3_K to 4-bit scales when QK_K = 64
Otherwise there isn't much benefit from this
quantization type. There is some very slight loss
in accuracy, but we reduce size by ~7%.
E.g., for OpenLLaMA-3B, Q3_K_S perplexity is
8.6131 with 8-bit scales and 8.6352 with 4-bit,
while file size decreases from 1.53G to 1.44G.
* k_quants: switch Q4_K to 4-bit scales when QK_K = 64
Here the loss in accuracy is greater than for Q3_K,
but the Q4_K points still move further to the left on
the perplexity vs size curve.
* k_quants: forgot to add the Metal changes in last commit
* k_quants: change Q5_K to be type 0 when QK_K = 64
Still needs AVX2 implementation
* k_quants: AVX2 implementation for new 64-weight Q5_K
* k_quants: 10% faster ARM_NEON Q5_K dot product
* k_quants: fixed issue caused by merging with master
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-26 18:43:07 +02:00
|
|
|
|
2023-09-08 18:01:04 +02:00
|
|
|
const int tid = tiisg/4;
|
|
|
|
const int ix = tiisg%4;
|
|
|
|
const int ip = tid/4; // 0 or 1
|
|
|
|
const int il = 2*((tid%4)/2); // 0 or 2
|
Metal implementation for all k_quants (#1807)
* metal : improve q4_K
28.3 -> 26.0 ms/token by avoiding a branch in the
calculation of the scales.
* metal : small improvement for Q4_K
* metal : still optimizing Q4_K
This commit pushes it down to 25.3 ms / token.
The crazy idea of using 6 bits for the scales is really costly on
Metal: if I remove the bit fiddling necessary to make the block
scales, time goes almost to the Q4_0 23 ms/token.
Before pushing the k-quants upstream I had a Q4_K variant that
had used 8-bit scales. It wasn't more accurate, used 0.125 bits more per weight,
was running slightly slower on the CPU (due to the larger model size
and being memory bound there), and the difference was entirely
negligible under CUDA. So, I decided to publish the version with 6-bit
scales. Perhaps I should re-consider and change to 8-bit scales?
* metal : some more optimizations
Q2_K: 25.4 ms/token
Q6_K: 27.3 ms/token
Q4_0: 22.8 ms/token
Q4_1: 23.1 ms/token
* metal : Q3_K support
Something is not quite right yet.
* metal : Q5_K support
Initial version achieves 31.2 ms/token, 210 GB/s
* metal : still not able to figure out why q3_K does not work
* Minor
* metal : yet another failed attempt to make q3_K work
* metal : optimize Q5_K
31.2 ms -> 27.8 ms.
250 GB/s.
* metal : q3_K still not working
Adding a heavily commented q3_K metal kernel to explain
my obviously faulty logic. Perhaps someone could spot the issue?
* metal : q3_K finally working
Not optimized at all.
What was the issue? The scales are not 4-bytes aligned,
and I was accessing them with a uint32_t pointer.
When I tried that on CUDA, I got an error (illegal memory access)
and added a memcpy to a local array of 3 uint32_t's.
But on Metal it told me there is no memcpy, so I tried
accessing directly. There is no error, just garbage results.
At some point I did try accessing the scales with an uint16_t
pointer (the scales are for sure 2-byte aligned), but was
still getting garbage. I guess, there must have been another bug.
No access to scales is via a uint16_t pointer and, after starting
from scratch from the C dequantize function, it finally works.
* metal : Q3_K 1st optimization pass
* metal : Q3_K second optimization pass - 29.6 ms/token
* metal : Q3_K cleanup
* metal : fixed accidentally broken Q2_K
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-12 21:39:21 +02:00
|
|
|
const int ir = tid%2;
|
|
|
|
const int n = 8;
|
|
|
|
const int l0 = n*ir;
|
|
|
|
|
2023-09-08 18:01:04 +02:00
|
|
|
// One would think that the Metal compiler would figure out that ip and il can only have
|
|
|
|
// 4 possible states, and optimize accordingly. Well, no. It needs help, and we do it
|
|
|
|
// with these two tales.
|
|
|
|
//
|
|
|
|
// Possible masks for the high bit
|
|
|
|
const ushort4 mm[4] = {{0x0001, 0x0100, 0x0002, 0x0200}, // ip = 0, il = 0
|
|
|
|
{0x0004, 0x0400, 0x0008, 0x0800}, // ip = 0, il = 2
|
|
|
|
{0x0010, 0x1000, 0x0020, 0x2000}, // ip = 1, il = 0
|
|
|
|
{0x0040, 0x4000, 0x0080, 0x8000}}; // ip = 1, il = 2
|
|
|
|
|
|
|
|
// Possible masks for the low 2 bits
|
|
|
|
const int4 qm[2] = {{0x0003, 0x0300, 0x000c, 0x0c00}, {0x0030, 0x3000, 0x00c0, 0xc000}};
|
|
|
|
|
|
|
|
const ushort4 hm = mm[2*ip + il/2];
|
Metal implementation for all k_quants (#1807)
* metal : improve q4_K
28.3 -> 26.0 ms/token by avoiding a branch in the
calculation of the scales.
* metal : small improvement for Q4_K
* metal : still optimizing Q4_K
This commit pushes it down to 25.3 ms / token.
The crazy idea of using 6 bits for the scales is really costly on
Metal: if I remove the bit fiddling necessary to make the block
scales, time goes almost to the Q4_0 23 ms/token.
Before pushing the k-quants upstream I had a Q4_K variant that
had used 8-bit scales. It wasn't more accurate, used 0.125 bits more per weight,
was running slightly slower on the CPU (due to the larger model size
and being memory bound there), and the difference was entirely
negligible under CUDA. So, I decided to publish the version with 6-bit
scales. Perhaps I should re-consider and change to 8-bit scales?
* metal : some more optimizations
Q2_K: 25.4 ms/token
Q6_K: 27.3 ms/token
Q4_0: 22.8 ms/token
Q4_1: 23.1 ms/token
* metal : Q3_K support
Something is not quite right yet.
* metal : Q5_K support
Initial version achieves 31.2 ms/token, 210 GB/s
* metal : still not able to figure out why q3_K does not work
* Minor
* metal : yet another failed attempt to make q3_K work
* metal : optimize Q5_K
31.2 ms -> 27.8 ms.
250 GB/s.
* metal : q3_K still not working
Adding a heavily commented q3_K metal kernel to explain
my obviously faulty logic. Perhaps someone could spot the issue?
* metal : q3_K finally working
Not optimized at all.
What was the issue? The scales are not 4-bytes aligned,
and I was accessing them with a uint32_t pointer.
When I tried that on CUDA, I got an error (illegal memory access)
and added a memcpy to a local array of 3 uint32_t's.
But on Metal it told me there is no memcpy, so I tried
accessing directly. There is no error, just garbage results.
At some point I did try accessing the scales with an uint16_t
pointer (the scales are for sure 2-byte aligned), but was
still getting garbage. I guess, there must have been another bug.
No access to scales is via a uint16_t pointer and, after starting
from scratch from the C dequantize function, it finally works.
* metal : Q3_K 1st optimization pass
* metal : Q3_K second optimization pass - 29.6 ms/token
* metal : Q3_K cleanup
* metal : fixed accidentally broken Q2_K
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-12 21:39:21 +02:00
|
|
|
|
|
|
|
const int shift = 2*il;
|
2023-09-08 18:01:04 +02:00
|
|
|
const float v1 = il == 0 ? 4.f : 64.f;
|
|
|
|
const float v2 = 4.f * v1;
|
Metal implementation for all k_quants (#1807)
* metal : improve q4_K
28.3 -> 26.0 ms/token by avoiding a branch in the
calculation of the scales.
* metal : small improvement for Q4_K
* metal : still optimizing Q4_K
This commit pushes it down to 25.3 ms / token.
The crazy idea of using 6 bits for the scales is really costly on
Metal: if I remove the bit fiddling necessary to make the block
scales, time goes almost to the Q4_0 23 ms/token.
Before pushing the k-quants upstream I had a Q4_K variant that
had used 8-bit scales. It wasn't more accurate, used 0.125 bits more per weight,
was running slightly slower on the CPU (due to the larger model size
and being memory bound there), and the difference was entirely
negligible under CUDA. So, I decided to publish the version with 6-bit
scales. Perhaps I should re-consider and change to 8-bit scales?
* metal : some more optimizations
Q2_K: 25.4 ms/token
Q6_K: 27.3 ms/token
Q4_0: 22.8 ms/token
Q4_1: 23.1 ms/token
* metal : Q3_K support
Something is not quite right yet.
* metal : Q5_K support
Initial version achieves 31.2 ms/token, 210 GB/s
* metal : still not able to figure out why q3_K does not work
* Minor
* metal : yet another failed attempt to make q3_K work
* metal : optimize Q5_K
31.2 ms -> 27.8 ms.
250 GB/s.
* metal : q3_K still not working
Adding a heavily commented q3_K metal kernel to explain
my obviously faulty logic. Perhaps someone could spot the issue?
* metal : q3_K finally working
Not optimized at all.
What was the issue? The scales are not 4-bytes aligned,
and I was accessing them with a uint32_t pointer.
When I tried that on CUDA, I got an error (illegal memory access)
and added a memcpy to a local array of 3 uint32_t's.
But on Metal it told me there is no memcpy, so I tried
accessing directly. There is no error, just garbage results.
At some point I did try accessing the scales with an uint16_t
pointer (the scales are for sure 2-byte aligned), but was
still getting garbage. I guess, there must have been another bug.
No access to scales is via a uint16_t pointer and, after starting
from scratch from the C dequantize function, it finally works.
* metal : Q3_K 1st optimization pass
* metal : Q3_K second optimization pass - 29.6 ms/token
* metal : Q3_K cleanup
* metal : fixed accidentally broken Q2_K
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-12 21:39:21 +02:00
|
|
|
|
|
|
|
const uint16_t s_shift1 = 4*ip;
|
2023-09-08 18:01:04 +02:00
|
|
|
const uint16_t s_shift2 = s_shift1 + il;
|
Metal implementation for all k_quants (#1807)
* metal : improve q4_K
28.3 -> 26.0 ms/token by avoiding a branch in the
calculation of the scales.
* metal : small improvement for Q4_K
* metal : still optimizing Q4_K
This commit pushes it down to 25.3 ms / token.
The crazy idea of using 6 bits for the scales is really costly on
Metal: if I remove the bit fiddling necessary to make the block
scales, time goes almost to the Q4_0 23 ms/token.
Before pushing the k-quants upstream I had a Q4_K variant that
had used 8-bit scales. It wasn't more accurate, used 0.125 bits more per weight,
was running slightly slower on the CPU (due to the larger model size
and being memory bound there), and the difference was entirely
negligible under CUDA. So, I decided to publish the version with 6-bit
scales. Perhaps I should re-consider and change to 8-bit scales?
* metal : some more optimizations
Q2_K: 25.4 ms/token
Q6_K: 27.3 ms/token
Q4_0: 22.8 ms/token
Q4_1: 23.1 ms/token
* metal : Q3_K support
Something is not quite right yet.
* metal : Q5_K support
Initial version achieves 31.2 ms/token, 210 GB/s
* metal : still not able to figure out why q3_K does not work
* Minor
* metal : yet another failed attempt to make q3_K work
* metal : optimize Q5_K
31.2 ms -> 27.8 ms.
250 GB/s.
* metal : q3_K still not working
Adding a heavily commented q3_K metal kernel to explain
my obviously faulty logic. Perhaps someone could spot the issue?
* metal : q3_K finally working
Not optimized at all.
What was the issue? The scales are not 4-bytes aligned,
and I was accessing them with a uint32_t pointer.
When I tried that on CUDA, I got an error (illegal memory access)
and added a memcpy to a local array of 3 uint32_t's.
But on Metal it told me there is no memcpy, so I tried
accessing directly. There is no error, just garbage results.
At some point I did try accessing the scales with an uint16_t
pointer (the scales are for sure 2-byte aligned), but was
still getting garbage. I guess, there must have been another bug.
No access to scales is via a uint16_t pointer and, after starting
from scratch from the C dequantize function, it finally works.
* metal : Q3_K 1st optimization pass
* metal : Q3_K second optimization pass - 29.6 ms/token
* metal : Q3_K cleanup
* metal : fixed accidentally broken Q2_K
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-12 21:39:21 +02:00
|
|
|
|
|
|
|
const int q_offset = 32*ip + l0;
|
|
|
|
const int y_offset = 128*ip + 32*il + l0;
|
|
|
|
|
2023-07-21 16:05:30 +02:00
|
|
|
device const float * y1 = yy + ix*QK_K + y_offset;
|
Metal implementation for all k_quants (#1807)
* metal : improve q4_K
28.3 -> 26.0 ms/token by avoiding a branch in the
calculation of the scales.
* metal : small improvement for Q4_K
* metal : still optimizing Q4_K
This commit pushes it down to 25.3 ms / token.
The crazy idea of using 6 bits for the scales is really costly on
Metal: if I remove the bit fiddling necessary to make the block
scales, time goes almost to the Q4_0 23 ms/token.
Before pushing the k-quants upstream I had a Q4_K variant that
had used 8-bit scales. It wasn't more accurate, used 0.125 bits more per weight,
was running slightly slower on the CPU (due to the larger model size
and being memory bound there), and the difference was entirely
negligible under CUDA. So, I decided to publish the version with 6-bit
scales. Perhaps I should re-consider and change to 8-bit scales?
* metal : some more optimizations
Q2_K: 25.4 ms/token
Q6_K: 27.3 ms/token
Q4_0: 22.8 ms/token
Q4_1: 23.1 ms/token
* metal : Q3_K support
Something is not quite right yet.
* metal : Q5_K support
Initial version achieves 31.2 ms/token, 210 GB/s
* metal : still not able to figure out why q3_K does not work
* Minor
* metal : yet another failed attempt to make q3_K work
* metal : optimize Q5_K
31.2 ms -> 27.8 ms.
250 GB/s.
* metal : q3_K still not working
Adding a heavily commented q3_K metal kernel to explain
my obviously faulty logic. Perhaps someone could spot the issue?
* metal : q3_K finally working
Not optimized at all.
What was the issue? The scales are not 4-bytes aligned,
and I was accessing them with a uint32_t pointer.
When I tried that on CUDA, I got an error (illegal memory access)
and added a memcpy to a local array of 3 uint32_t's.
But on Metal it told me there is no memcpy, so I tried
accessing directly. There is no error, just garbage results.
At some point I did try accessing the scales with an uint16_t
pointer (the scales are for sure 2-byte aligned), but was
still getting garbage. I guess, there must have been another bug.
No access to scales is via a uint16_t pointer and, after starting
from scratch from the C dequantize function, it finally works.
* metal : Q3_K 1st optimization pass
* metal : Q3_K second optimization pass - 29.6 ms/token
* metal : Q3_K cleanup
* metal : fixed accidentally broken Q2_K
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-12 21:39:21 +02:00
|
|
|
|
2023-09-08 18:01:04 +02:00
|
|
|
uint32_t scales32, aux32;
|
|
|
|
thread uint16_t * scales16 = (thread uint16_t *)&scales32;
|
|
|
|
thread const int8_t * scales = (thread const int8_t *)&scales32;
|
|
|
|
|
|
|
|
float sumf1[2] = {0.f};
|
|
|
|
float sumf2[2] = {0.f};
|
|
|
|
for (int i = ix; i < nb; i += 4) {
|
2023-07-21 16:05:30 +02:00
|
|
|
for (int l = 0; l < 8; ++l) {
|
2023-09-08 18:01:04 +02:00
|
|
|
yl[l+ 0] = y1[l+ 0];
|
|
|
|
yl[l+ 8] = y1[l+16];
|
|
|
|
yl[l+16] = y1[l+32];
|
|
|
|
yl[l+24] = y1[l+48];
|
Metal implementation for all k_quants (#1807)
* metal : improve q4_K
28.3 -> 26.0 ms/token by avoiding a branch in the
calculation of the scales.
* metal : small improvement for Q4_K
* metal : still optimizing Q4_K
This commit pushes it down to 25.3 ms / token.
The crazy idea of using 6 bits for the scales is really costly on
Metal: if I remove the bit fiddling necessary to make the block
scales, time goes almost to the Q4_0 23 ms/token.
Before pushing the k-quants upstream I had a Q4_K variant that
had used 8-bit scales. It wasn't more accurate, used 0.125 bits more per weight,
was running slightly slower on the CPU (due to the larger model size
and being memory bound there), and the difference was entirely
negligible under CUDA. So, I decided to publish the version with 6-bit
scales. Perhaps I should re-consider and change to 8-bit scales?
* metal : some more optimizations
Q2_K: 25.4 ms/token
Q6_K: 27.3 ms/token
Q4_0: 22.8 ms/token
Q4_1: 23.1 ms/token
* metal : Q3_K support
Something is not quite right yet.
* metal : Q5_K support
Initial version achieves 31.2 ms/token, 210 GB/s
* metal : still not able to figure out why q3_K does not work
* Minor
* metal : yet another failed attempt to make q3_K work
* metal : optimize Q5_K
31.2 ms -> 27.8 ms.
250 GB/s.
* metal : q3_K still not working
Adding a heavily commented q3_K metal kernel to explain
my obviously faulty logic. Perhaps someone could spot the issue?
* metal : q3_K finally working
Not optimized at all.
What was the issue? The scales are not 4-bytes aligned,
and I was accessing them with a uint32_t pointer.
When I tried that on CUDA, I got an error (illegal memory access)
and added a memcpy to a local array of 3 uint32_t's.
But on Metal it told me there is no memcpy, so I tried
accessing directly. There is no error, just garbage results.
At some point I did try accessing the scales with an uint16_t
pointer (the scales are for sure 2-byte aligned), but was
still getting garbage. I guess, there must have been another bug.
No access to scales is via a uint16_t pointer and, after starting
from scratch from the C dequantize function, it finally works.
* metal : Q3_K 1st optimization pass
* metal : Q3_K second optimization pass - 29.6 ms/token
* metal : Q3_K cleanup
* metal : fixed accidentally broken Q2_K
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-12 21:39:21 +02:00
|
|
|
}
|
2023-07-21 16:05:30 +02:00
|
|
|
|
|
|
|
device const uint16_t * q = (device const uint16_t *)(x[i].qs + q_offset);
|
|
|
|
device const uint16_t * h = (device const uint16_t *)(x[i].hmask + l0);
|
|
|
|
device const uint16_t * a = (device const uint16_t *)(x[i].scales);
|
|
|
|
device const half * dh = &x[i].d;
|
|
|
|
|
|
|
|
for (int row = 0; row < 2; ++row) {
|
|
|
|
const float d_all = (float)dh[0];
|
|
|
|
|
2023-09-08 18:01:04 +02:00
|
|
|
scales16[0] = a[4];
|
|
|
|
scales16[1] = a[5];
|
|
|
|
aux32 = ((scales32 >> s_shift2) << 4) & 0x30303030;
|
|
|
|
scales16[0] = a[il+0];
|
|
|
|
scales16[1] = a[il+1];
|
|
|
|
scales32 = ((scales32 >> s_shift1) & 0x0f0f0f0f) | aux32;
|
|
|
|
|
|
|
|
float s1 = 0, s2 = 0, s3 = 0, s4 = 0, s5 = 0, s6 = 0;
|
2023-07-21 16:05:30 +02:00
|
|
|
for (int l = 0; l < n; l += 2) {
|
2023-09-08 18:01:04 +02:00
|
|
|
const int32_t qs = q[l/2];
|
|
|
|
s1 += yl[l+0] * (qs & qm[il/2][0]);
|
|
|
|
s2 += yl[l+1] * (qs & qm[il/2][1]);
|
|
|
|
s3 += ((h[l/2] & hm[0]) ? 0.f : yl[l+0]) + ((h[l/2] & hm[1]) ? 0.f : yl[l+1]);
|
|
|
|
s4 += yl[l+16] * (qs & qm[il/2][2]);
|
|
|
|
s5 += yl[l+17] * (qs & qm[il/2][3]);
|
|
|
|
s6 += ((h[l/2] & hm[2]) ? 0.f : yl[l+16]) + ((h[l/2] & hm[3]) ? 0.f : yl[l+17]);
|
2023-07-21 16:05:30 +02:00
|
|
|
}
|
2023-09-08 18:01:04 +02:00
|
|
|
float d1 = d_all * (s1 + 1.f/256.f * s2 - s3*v1);
|
|
|
|
float d2 = d_all * (s4 + 1.f/256.f * s5 - s6*v2);
|
|
|
|
sumf1[row] += d1 * (scales[0] - 32);
|
|
|
|
sumf2[row] += d2 * (scales[2] - 32);
|
2023-07-21 16:05:30 +02:00
|
|
|
|
2023-09-08 18:01:04 +02:00
|
|
|
s1 = s2 = s3 = s4 = s5 = s6 = 0;
|
2023-07-21 16:05:30 +02:00
|
|
|
for (int l = 0; l < n; l += 2) {
|
2023-09-08 18:01:04 +02:00
|
|
|
const int32_t qs = q[l/2+8];
|
|
|
|
s1 += yl[l+8] * (qs & qm[il/2][0]);
|
|
|
|
s2 += yl[l+9] * (qs & qm[il/2][1]);
|
|
|
|
s3 += ((h[l/2+8] & hm[0]) ? 0.f : yl[l+8]) + ((h[l/2+8] & hm[1]) ? 0.f : yl[l+9]);
|
|
|
|
s4 += yl[l+24] * (qs & qm[il/2][2]);
|
|
|
|
s5 += yl[l+25] * (qs & qm[il/2][3]);
|
|
|
|
s6 += ((h[l/2+8] & hm[2]) ? 0.f : yl[l+24]) + ((h[l/2+8] & hm[3]) ? 0.f : yl[l+25]);
|
2023-07-21 16:05:30 +02:00
|
|
|
}
|
2023-09-08 18:01:04 +02:00
|
|
|
d1 = d_all * (s1 + 1.f/256.f * s2 - s3*v1);
|
|
|
|
d2 = d_all * (s4 + 1.f/256.f * s5 - s6*v2);
|
|
|
|
sumf1[row] += d1 * (scales[1] - 32);
|
|
|
|
sumf2[row] += d2 * (scales[3] - 32);
|
2023-07-21 16:05:30 +02:00
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
q += nb01/2;
|
|
|
|
h += nb01/2;
|
|
|
|
a += nb01/2;
|
|
|
|
dh += nb01/2;
|
Metal implementation for all k_quants (#1807)
* metal : improve q4_K
28.3 -> 26.0 ms/token by avoiding a branch in the
calculation of the scales.
* metal : small improvement for Q4_K
* metal : still optimizing Q4_K
This commit pushes it down to 25.3 ms / token.
The crazy idea of using 6 bits for the scales is really costly on
Metal: if I remove the bit fiddling necessary to make the block
scales, time goes almost to the Q4_0 23 ms/token.
Before pushing the k-quants upstream I had a Q4_K variant that
had used 8-bit scales. It wasn't more accurate, used 0.125 bits more per weight,
was running slightly slower on the CPU (due to the larger model size
and being memory bound there), and the difference was entirely
negligible under CUDA. So, I decided to publish the version with 6-bit
scales. Perhaps I should re-consider and change to 8-bit scales?
* metal : some more optimizations
Q2_K: 25.4 ms/token
Q6_K: 27.3 ms/token
Q4_0: 22.8 ms/token
Q4_1: 23.1 ms/token
* metal : Q3_K support
Something is not quite right yet.
* metal : Q5_K support
Initial version achieves 31.2 ms/token, 210 GB/s
* metal : still not able to figure out why q3_K does not work
* Minor
* metal : yet another failed attempt to make q3_K work
* metal : optimize Q5_K
31.2 ms -> 27.8 ms.
250 GB/s.
* metal : q3_K still not working
Adding a heavily commented q3_K metal kernel to explain
my obviously faulty logic. Perhaps someone could spot the issue?
* metal : q3_K finally working
Not optimized at all.
What was the issue? The scales are not 4-bytes aligned,
and I was accessing them with a uint32_t pointer.
When I tried that on CUDA, I got an error (illegal memory access)
and added a memcpy to a local array of 3 uint32_t's.
But on Metal it told me there is no memcpy, so I tried
accessing directly. There is no error, just garbage results.
At some point I did try accessing the scales with an uint16_t
pointer (the scales are for sure 2-byte aligned), but was
still getting garbage. I guess, there must have been another bug.
No access to scales is via a uint16_t pointer and, after starting
from scratch from the C dequantize function, it finally works.
* metal : Q3_K 1st optimization pass
* metal : Q3_K second optimization pass - 29.6 ms/token
* metal : Q3_K cleanup
* metal : fixed accidentally broken Q2_K
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-12 21:39:21 +02:00
|
|
|
}
|
2023-07-21 16:05:30 +02:00
|
|
|
|
2023-09-08 18:01:04 +02:00
|
|
|
y1 += 4 * QK_K;
|
Metal implementation for all k_quants (#1807)
* metal : improve q4_K
28.3 -> 26.0 ms/token by avoiding a branch in the
calculation of the scales.
* metal : small improvement for Q4_K
* metal : still optimizing Q4_K
This commit pushes it down to 25.3 ms / token.
The crazy idea of using 6 bits for the scales is really costly on
Metal: if I remove the bit fiddling necessary to make the block
scales, time goes almost to the Q4_0 23 ms/token.
Before pushing the k-quants upstream I had a Q4_K variant that
had used 8-bit scales. It wasn't more accurate, used 0.125 bits more per weight,
was running slightly slower on the CPU (due to the larger model size
and being memory bound there), and the difference was entirely
negligible under CUDA. So, I decided to publish the version with 6-bit
scales. Perhaps I should re-consider and change to 8-bit scales?
* metal : some more optimizations
Q2_K: 25.4 ms/token
Q6_K: 27.3 ms/token
Q4_0: 22.8 ms/token
Q4_1: 23.1 ms/token
* metal : Q3_K support
Something is not quite right yet.
* metal : Q5_K support
Initial version achieves 31.2 ms/token, 210 GB/s
* metal : still not able to figure out why q3_K does not work
* Minor
* metal : yet another failed attempt to make q3_K work
* metal : optimize Q5_K
31.2 ms -> 27.8 ms.
250 GB/s.
* metal : q3_K still not working
Adding a heavily commented q3_K metal kernel to explain
my obviously faulty logic. Perhaps someone could spot the issue?
* metal : q3_K finally working
Not optimized at all.
What was the issue? The scales are not 4-bytes aligned,
and I was accessing them with a uint32_t pointer.
When I tried that on CUDA, I got an error (illegal memory access)
and added a memcpy to a local array of 3 uint32_t's.
But on Metal it told me there is no memcpy, so I tried
accessing directly. There is no error, just garbage results.
At some point I did try accessing the scales with an uint16_t
pointer (the scales are for sure 2-byte aligned), but was
still getting garbage. I guess, there must have been another bug.
No access to scales is via a uint16_t pointer and, after starting
from scratch from the C dequantize function, it finally works.
* metal : Q3_K 1st optimization pass
* metal : Q3_K second optimization pass - 29.6 ms/token
* metal : Q3_K cleanup
* metal : fixed accidentally broken Q2_K
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-12 21:39:21 +02:00
|
|
|
}
|
|
|
|
|
2023-07-21 16:05:30 +02:00
|
|
|
for (int row = 0; row < 2; ++row) {
|
2023-09-08 18:01:04 +02:00
|
|
|
const float sumf = (sumf1[row] + 0.25f * sumf2[row]) / (1 << shift);
|
|
|
|
sumf1[row] = simd_sum(sumf);
|
|
|
|
}
|
|
|
|
if (tiisg == 0) {
|
|
|
|
for (int row = 0; row < 2; ++row) {
|
2023-12-07 21:26:54 +01:00
|
|
|
dst[r1*ne0 + im*ne0*ne1 + first_row + row] = sumf1[row];
|
2023-07-21 16:05:30 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2023-06-08 21:28:21 +02:00
|
|
|
|
2023-12-13 13:04:25 +01:00
|
|
|
[[host_name("kernel_mul_mv_q3_K_f32")]]
|
|
|
|
kernel void kernel_mul_mv_q3_K_f32(
|
|
|
|
device const void * src0,
|
|
|
|
device const float * src1,
|
|
|
|
device float * dst,
|
|
|
|
constant int64_t & ne00,
|
2024-01-02 09:57:44 +01:00
|
|
|
constant int64_t & ne01,
|
|
|
|
constant int64_t & ne02,
|
|
|
|
constant uint64_t & nb00,
|
|
|
|
constant uint64_t & nb01,
|
|
|
|
constant uint64_t & nb02,
|
2024-10-25 21:26:15 +02:00
|
|
|
constant uint64_t & nb03,
|
2024-01-02 09:57:44 +01:00
|
|
|
constant int64_t & ne10,
|
|
|
|
constant int64_t & ne11,
|
|
|
|
constant int64_t & ne12,
|
|
|
|
constant uint64_t & nb10,
|
|
|
|
constant uint64_t & nb11,
|
|
|
|
constant uint64_t & nb12,
|
2024-10-25 21:26:15 +02:00
|
|
|
constant uint64_t & nb13,
|
2024-01-02 09:57:44 +01:00
|
|
|
constant int64_t & ne0,
|
|
|
|
constant int64_t & ne1,
|
|
|
|
constant uint & r2,
|
|
|
|
constant uint & r3,
|
2023-12-13 13:04:25 +01:00
|
|
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
|
|
|
uint tiisg[[thread_index_in_simdgroup]],
|
|
|
|
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
kernel_mul_mv_q3_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, nb01, nb02, nb03, ne10, ne12, nb11, nb12, nb13, ne0, ne1, r2, r3, nullptr, tgpig, tiisg, sgitg);
|
2023-12-13 13:04:25 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
void kernel_mul_mv_q4_K_f32_impl(
|
2023-06-08 09:08:23 +02:00
|
|
|
device const void * src0,
|
|
|
|
device const float * src1,
|
|
|
|
device float * dst,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne00,
|
|
|
|
int64_t ne01,
|
|
|
|
int64_t ne02,
|
2024-10-25 21:26:15 +02:00
|
|
|
uint64_t nb01,
|
|
|
|
uint64_t nb02,
|
|
|
|
uint64_t nb03,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne10,
|
|
|
|
int64_t ne12,
|
2024-10-25 21:26:15 +02:00
|
|
|
uint64_t nb11,
|
|
|
|
uint64_t nb12,
|
|
|
|
uint64_t nb13,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne0,
|
|
|
|
int64_t ne1,
|
|
|
|
uint r2,
|
|
|
|
uint r3,
|
|
|
|
threadgroup int8_t * shared_values,
|
|
|
|
uint3 tgpig,
|
|
|
|
uint tiisg,
|
|
|
|
uint sgitg) {
|
k-quants : support for super-block size of 64 (#2001)
* k_quants: WIP super-blocks with 64 weights
* k_quants: WIP super-blocks with 64 weights
Q6_K scalar and AVX2 works
* k_quants: WIP super-blocks with 64 weights
Q4_K scalar and AVX2 works
* k_quants: WIP super-blocks with 64 weights
Q2_K scalar and AVX2 works. Q2_K is way too slow (it is actually slower
than the scalar implementation)
* k_quants: WIP super-blocks with 64 weights
Q3_K scalar and AVX2 works.
* k_quants: WIP super-blocks with 64 weights
Q5_K scalar and AVX2 works, and with that all
k_quants are done on AVX2 and scalar
* k_quants: WIP super-blocks with 64 weights
Q6_K working on CUDA. Cannot make it run quite as gast as
with super-blocks with 256 weigths: 8% slower on 4080,
20% slower on the 1660 (but there we fit 1 less layer on the
GPU because pf the larger model size), so some fraction of
these 20% is due to that,
* k_quants: WIP super-blocks with 64 weights
Q4_K working on CUDA. ~10% slower on GTX-1660,
16% slower on 4080.
* k_quants: WIP super-blocks with 64 weights
Q2_K working on CUDA. ~3% slower on GTX-1660,
10% slower on 4080.
* k_quants: WIP super-blocks with 64 weights
Q3_K working on CUDA.
* k_quants: WIP super-blocks with 64 weights
Q5_K working on CUDA, and with this CUDA is done.
* k_quants: WIP super-blocks with 64 weights
Q6_K working on ARM_NEON
* k_quants: WIP super-blocks with 64 weights
Q4_K working on ARM_NEON, but quite a bit slower than 256 weights
* k_quants: WIP super-blocks with 64 weights
Q2_K working on ARM_NEON, but quite a bit slower than 256 weights
* k_quants: WIP super-blocks with 64 weights
Q3_K working on ARM_NEON, but quite a bit slower than 256 weights.
* k_quants: WIP super-blocks with 64 weights
Q5_K working on ARM_NEON, but quite a bit slower than 256 weights.
With that, we have full support for ARM_NEON, although
performance is not quite there.
* k_quants: WIP super-blocks with 64 weights
Slightly more efficient Q3_K and Q5_K
* k_quants: WIP super-blocks with 64 weights
Another small improvement for Q3_K and Q5_K on ARM_NEON
* k_quants: WIP super-blocks with 64 weights
Yet another speedup for Q5_K on ARM_NEON.
We are now within 10% of the QK_K = 256 version.
* k_quants: WIP super-blocks with 64 weights
* We are able to pass preprocessor macros to the Metal
compiler
* Q6_K works and is actually slightly more efficient than
the QK_K = 256 version (25.2 ms vs 25.8 ms)
* k_quants: WIP super-blocks with 64 weights
Q4_K works on Metal and is actually slightly faster
than QK_K = 256 (21.95 ms vs 24.0 ms).
* k_quants: WIP super-blocks with 64 weights
Q2_K works on Metal and is very slightly faster
than QK_K = 256 (23.8 ms vs 24.2 ms).
* k_quants: WIP super-blocks with 64 weights
Q3_K works on Metal and is slightly faster
than QK_K = 256 (26.6 ms vs 28.3 ms).
* k_quants: WIP super-blocks with 64 weights
Q5_K works on Metal and is slightly faster
than QK_K = 256 (23.7 ms vs 26.3 ms).
* k_quants: call them _K, not _k, also on Metal
* k_quants: correctly define QK_K in llama.cpp
* Fixed bug in q4_K quantization added with the 64-block addition
* Simplify via lambda
* k_quants: swicth Q3_K to 4-bit scales when QK_K = 64
Otherwise there isn't much benefit from this
quantization type. There is some very slight loss
in accuracy, but we reduce size by ~7%.
E.g., for OpenLLaMA-3B, Q3_K_S perplexity is
8.6131 with 8-bit scales and 8.6352 with 4-bit,
while file size decreases from 1.53G to 1.44G.
* k_quants: switch Q4_K to 4-bit scales when QK_K = 64
Here the loss in accuracy is greater than for Q3_K,
but the Q4_K points still move further to the left on
the perplexity vs size curve.
* k_quants: forgot to add the Metal changes in last commit
* k_quants: change Q5_K to be type 0 when QK_K = 64
Still needs AVX2 implementation
* k_quants: AVX2 implementation for new 64-weight Q5_K
* k_quants: 10% faster ARM_NEON Q5_K dot product
* k_quants: fixed issue caused by merging with master
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-26 18:43:07 +02:00
|
|
|
|
|
|
|
const uint16_t kmask1 = 0x3f3f;
|
|
|
|
const uint16_t kmask2 = 0x0f0f;
|
|
|
|
const uint16_t kmask3 = 0xc0c0;
|
|
|
|
|
2023-07-20 14:18:43 +02:00
|
|
|
const int ix = tiisg/8; // 0...3
|
|
|
|
const int it = tiisg%8; // 0...7
|
2023-12-07 21:26:54 +01:00
|
|
|
const int iq = it/4; // 0 or 1
|
2023-07-20 14:18:43 +02:00
|
|
|
const int ir = it%4; // 0...3
|
Metal implementation for all k_quants (#1807)
* metal : improve q4_K
28.3 -> 26.0 ms/token by avoiding a branch in the
calculation of the scales.
* metal : small improvement for Q4_K
* metal : still optimizing Q4_K
This commit pushes it down to 25.3 ms / token.
The crazy idea of using 6 bits for the scales is really costly on
Metal: if I remove the bit fiddling necessary to make the block
scales, time goes almost to the Q4_0 23 ms/token.
Before pushing the k-quants upstream I had a Q4_K variant that
had used 8-bit scales. It wasn't more accurate, used 0.125 bits more per weight,
was running slightly slower on the CPU (due to the larger model size
and being memory bound there), and the difference was entirely
negligible under CUDA. So, I decided to publish the version with 6-bit
scales. Perhaps I should re-consider and change to 8-bit scales?
* metal : some more optimizations
Q2_K: 25.4 ms/token
Q6_K: 27.3 ms/token
Q4_0: 22.8 ms/token
Q4_1: 23.1 ms/token
* metal : Q3_K support
Something is not quite right yet.
* metal : Q5_K support
Initial version achieves 31.2 ms/token, 210 GB/s
* metal : still not able to figure out why q3_K does not work
* Minor
* metal : yet another failed attempt to make q3_K work
* metal : optimize Q5_K
31.2 ms -> 27.8 ms.
250 GB/s.
* metal : q3_K still not working
Adding a heavily commented q3_K metal kernel to explain
my obviously faulty logic. Perhaps someone could spot the issue?
* metal : q3_K finally working
Not optimized at all.
What was the issue? The scales are not 4-bytes aligned,
and I was accessing them with a uint32_t pointer.
When I tried that on CUDA, I got an error (illegal memory access)
and added a memcpy to a local array of 3 uint32_t's.
But on Metal it told me there is no memcpy, so I tried
accessing directly. There is no error, just garbage results.
At some point I did try accessing the scales with an uint16_t
pointer (the scales are for sure 2-byte aligned), but was
still getting garbage. I guess, there must have been another bug.
No access to scales is via a uint16_t pointer and, after starting
from scratch from the C dequantize function, it finally works.
* metal : Q3_K 1st optimization pass
* metal : Q3_K second optimization pass - 29.6 ms/token
* metal : Q3_K cleanup
* metal : fixed accidentally broken Q2_K
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-12 21:39:21 +02:00
|
|
|
|
2023-07-20 14:18:43 +02:00
|
|
|
const int nb = ne00/QK_K;
|
|
|
|
const int r0 = tgpig.x;
|
|
|
|
const int r1 = tgpig.y;
|
2023-12-07 21:26:54 +01:00
|
|
|
const int im = tgpig.z;
|
2023-09-03 10:06:22 +02:00
|
|
|
//const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
|
|
|
|
const int first_row = r0 * N_DST;
|
2023-12-07 21:26:54 +01:00
|
|
|
|
|
|
|
const uint i12 = im%ne12;
|
|
|
|
const uint i13 = im/ne12;
|
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
const uint offset0 = first_row*nb01 + (i12/r2)*nb02 + (i13/r3)*nb03;
|
|
|
|
const uint offset1 = r1*nb11 + (i12 )*nb12 + (i13 )*nb13;
|
2023-12-07 21:26:54 +01:00
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
device const block_q4_K * x = (device const block_q4_K *) ((device char *) src0 + offset0);
|
|
|
|
device const float * y = (device const float *) ((device char *) src1 + offset1);
|
2023-12-07 21:26:54 +01:00
|
|
|
|
2023-07-20 14:18:43 +02:00
|
|
|
float yl[16];
|
|
|
|
float yh[16];
|
|
|
|
float sumf[N_DST]={0.f}, all_sum;
|
Metal implementation for all k_quants (#1807)
* metal : improve q4_K
28.3 -> 26.0 ms/token by avoiding a branch in the
calculation of the scales.
* metal : small improvement for Q4_K
* metal : still optimizing Q4_K
This commit pushes it down to 25.3 ms / token.
The crazy idea of using 6 bits for the scales is really costly on
Metal: if I remove the bit fiddling necessary to make the block
scales, time goes almost to the Q4_0 23 ms/token.
Before pushing the k-quants upstream I had a Q4_K variant that
had used 8-bit scales. It wasn't more accurate, used 0.125 bits more per weight,
was running slightly slower on the CPU (due to the larger model size
and being memory bound there), and the difference was entirely
negligible under CUDA. So, I decided to publish the version with 6-bit
scales. Perhaps I should re-consider and change to 8-bit scales?
* metal : some more optimizations
Q2_K: 25.4 ms/token
Q6_K: 27.3 ms/token
Q4_0: 22.8 ms/token
Q4_1: 23.1 ms/token
* metal : Q3_K support
Something is not quite right yet.
* metal : Q5_K support
Initial version achieves 31.2 ms/token, 210 GB/s
* metal : still not able to figure out why q3_K does not work
* Minor
* metal : yet another failed attempt to make q3_K work
* metal : optimize Q5_K
31.2 ms -> 27.8 ms.
250 GB/s.
* metal : q3_K still not working
Adding a heavily commented q3_K metal kernel to explain
my obviously faulty logic. Perhaps someone could spot the issue?
* metal : q3_K finally working
Not optimized at all.
What was the issue? The scales are not 4-bytes aligned,
and I was accessing them with a uint32_t pointer.
When I tried that on CUDA, I got an error (illegal memory access)
and added a memcpy to a local array of 3 uint32_t's.
But on Metal it told me there is no memcpy, so I tried
accessing directly. There is no error, just garbage results.
At some point I did try accessing the scales with an uint16_t
pointer (the scales are for sure 2-byte aligned), but was
still getting garbage. I guess, there must have been another bug.
No access to scales is via a uint16_t pointer and, after starting
from scratch from the C dequantize function, it finally works.
* metal : Q3_K 1st optimization pass
* metal : Q3_K second optimization pass - 29.6 ms/token
* metal : Q3_K cleanup
* metal : fixed accidentally broken Q2_K
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-12 21:39:21 +02:00
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
device const float * y4 = y + ix * QK_K + 64 * iq + 8 * ir;
|
Metal implementation for all k_quants (#1807)
* metal : improve q4_K
28.3 -> 26.0 ms/token by avoiding a branch in the
calculation of the scales.
* metal : small improvement for Q4_K
* metal : still optimizing Q4_K
This commit pushes it down to 25.3 ms / token.
The crazy idea of using 6 bits for the scales is really costly on
Metal: if I remove the bit fiddling necessary to make the block
scales, time goes almost to the Q4_0 23 ms/token.
Before pushing the k-quants upstream I had a Q4_K variant that
had used 8-bit scales. It wasn't more accurate, used 0.125 bits more per weight,
was running slightly slower on the CPU (due to the larger model size
and being memory bound there), and the difference was entirely
negligible under CUDA. So, I decided to publish the version with 6-bit
scales. Perhaps I should re-consider and change to 8-bit scales?
* metal : some more optimizations
Q2_K: 25.4 ms/token
Q6_K: 27.3 ms/token
Q4_0: 22.8 ms/token
Q4_1: 23.1 ms/token
* metal : Q3_K support
Something is not quite right yet.
* metal : Q5_K support
Initial version achieves 31.2 ms/token, 210 GB/s
* metal : still not able to figure out why q3_K does not work
* Minor
* metal : yet another failed attempt to make q3_K work
* metal : optimize Q5_K
31.2 ms -> 27.8 ms.
250 GB/s.
* metal : q3_K still not working
Adding a heavily commented q3_K metal kernel to explain
my obviously faulty logic. Perhaps someone could spot the issue?
* metal : q3_K finally working
Not optimized at all.
What was the issue? The scales are not 4-bytes aligned,
and I was accessing them with a uint32_t pointer.
When I tried that on CUDA, I got an error (illegal memory access)
and added a memcpy to a local array of 3 uint32_t's.
But on Metal it told me there is no memcpy, so I tried
accessing directly. There is no error, just garbage results.
At some point I did try accessing the scales with an uint16_t
pointer (the scales are for sure 2-byte aligned), but was
still getting garbage. I guess, there must have been another bug.
No access to scales is via a uint16_t pointer and, after starting
from scratch from the C dequantize function, it finally works.
* metal : Q3_K 1st optimization pass
* metal : Q3_K second optimization pass - 29.6 ms/token
* metal : Q3_K cleanup
* metal : fixed accidentally broken Q2_K
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-12 21:39:21 +02:00
|
|
|
|
2023-07-20 14:18:43 +02:00
|
|
|
uint16_t sc16[4];
|
|
|
|
thread const uint8_t * sc8 = (thread const uint8_t *)sc16;
|
2023-06-08 09:08:23 +02:00
|
|
|
|
2023-07-20 14:18:43 +02:00
|
|
|
for (int ib = ix; ib < nb; ib += 4) {
|
|
|
|
float4 sumy = {0.f, 0.f, 0.f, 0.f};
|
|
|
|
for (int i = 0; i < 8; ++i) {
|
|
|
|
yl[i+0] = y4[i+ 0]; sumy[0] += yl[i+0];
|
|
|
|
yl[i+8] = y4[i+ 32]; sumy[1] += yl[i+8];
|
|
|
|
yh[i+0] = y4[i+128]; sumy[2] += yh[i+0];
|
|
|
|
yh[i+8] = y4[i+160]; sumy[3] += yh[i+8];
|
|
|
|
}
|
2023-06-08 09:08:23 +02:00
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
device const uint16_t * sc = (device const uint16_t *)x[ib].scales + iq;
|
|
|
|
device const uint16_t * q1 = (device const uint16_t *)x[ib].qs + 16 * iq + 4 * ir;
|
2023-07-20 14:18:43 +02:00
|
|
|
device const half * dh = &x[ib].d;
|
2023-06-08 09:08:23 +02:00
|
|
|
|
2023-07-20 14:18:43 +02:00
|
|
|
for (int row = 0; row < N_DST; row++) {
|
|
|
|
sc16[0] = sc[0] & kmask1;
|
|
|
|
sc16[1] = sc[2] & kmask1;
|
|
|
|
sc16[2] = ((sc[4] >> 0) & kmask2) | ((sc[0] & kmask3) >> 2);
|
|
|
|
sc16[3] = ((sc[4] >> 4) & kmask2) | ((sc[2] & kmask3) >> 2);
|
|
|
|
|
|
|
|
device const uint16_t * q2 = q1 + 32;
|
|
|
|
|
|
|
|
float4 acc1 = {0.f, 0.f, 0.f, 0.f};
|
|
|
|
float4 acc2 = {0.f, 0.f, 0.f, 0.f};
|
|
|
|
for (int i = 0; i < 8; i += 2) {
|
|
|
|
acc1[0] += yl[i+0] * (q1[i/2] & 0x000F);
|
|
|
|
acc1[1] += yl[i+1] * (q1[i/2] & 0x0F00);
|
|
|
|
acc1[2] += yl[i+8] * (q1[i/2] & 0x00F0);
|
|
|
|
acc1[3] += yl[i+9] * (q1[i/2] & 0xF000);
|
|
|
|
acc2[0] += yh[i+0] * (q2[i/2] & 0x000F);
|
|
|
|
acc2[1] += yh[i+1] * (q2[i/2] & 0x0F00);
|
|
|
|
acc2[2] += yh[i+8] * (q2[i/2] & 0x00F0);
|
|
|
|
acc2[3] += yh[i+9] * (q2[i/2] & 0xF000);
|
|
|
|
}
|
Metal implementation for all k_quants (#1807)
* metal : improve q4_K
28.3 -> 26.0 ms/token by avoiding a branch in the
calculation of the scales.
* metal : small improvement for Q4_K
* metal : still optimizing Q4_K
This commit pushes it down to 25.3 ms / token.
The crazy idea of using 6 bits for the scales is really costly on
Metal: if I remove the bit fiddling necessary to make the block
scales, time goes almost to the Q4_0 23 ms/token.
Before pushing the k-quants upstream I had a Q4_K variant that
had used 8-bit scales. It wasn't more accurate, used 0.125 bits more per weight,
was running slightly slower on the CPU (due to the larger model size
and being memory bound there), and the difference was entirely
negligible under CUDA. So, I decided to publish the version with 6-bit
scales. Perhaps I should re-consider and change to 8-bit scales?
* metal : some more optimizations
Q2_K: 25.4 ms/token
Q6_K: 27.3 ms/token
Q4_0: 22.8 ms/token
Q4_1: 23.1 ms/token
* metal : Q3_K support
Something is not quite right yet.
* metal : Q5_K support
Initial version achieves 31.2 ms/token, 210 GB/s
* metal : still not able to figure out why q3_K does not work
* Minor
* metal : yet another failed attempt to make q3_K work
* metal : optimize Q5_K
31.2 ms -> 27.8 ms.
250 GB/s.
* metal : q3_K still not working
Adding a heavily commented q3_K metal kernel to explain
my obviously faulty logic. Perhaps someone could spot the issue?
* metal : q3_K finally working
Not optimized at all.
What was the issue? The scales are not 4-bytes aligned,
and I was accessing them with a uint32_t pointer.
When I tried that on CUDA, I got an error (illegal memory access)
and added a memcpy to a local array of 3 uint32_t's.
But on Metal it told me there is no memcpy, so I tried
accessing directly. There is no error, just garbage results.
At some point I did try accessing the scales with an uint16_t
pointer (the scales are for sure 2-byte aligned), but was
still getting garbage. I guess, there must have been another bug.
No access to scales is via a uint16_t pointer and, after starting
from scratch from the C dequantize function, it finally works.
* metal : Q3_K 1st optimization pass
* metal : Q3_K second optimization pass - 29.6 ms/token
* metal : Q3_K cleanup
* metal : fixed accidentally broken Q2_K
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-12 21:39:21 +02:00
|
|
|
|
2023-07-20 14:18:43 +02:00
|
|
|
float dall = dh[0];
|
|
|
|
float dmin = dh[1];
|
|
|
|
sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc1[1]) * sc8[0] +
|
|
|
|
(acc1[2] + 1.f/256.f * acc1[3]) * sc8[1] * 1.f/16.f +
|
|
|
|
(acc2[0] + 1.f/256.f * acc2[1]) * sc8[4] +
|
|
|
|
(acc2[2] + 1.f/256.f * acc2[3]) * sc8[5] * 1.f/16.f) -
|
|
|
|
dmin * (sumy[0] * sc8[2] + sumy[1] * sc8[3] + sumy[2] * sc8[6] + sumy[3] * sc8[7]);
|
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
q1 += nb01/2;
|
|
|
|
sc += nb01/2;
|
|
|
|
dh += nb01/2;
|
2023-06-08 09:08:23 +02:00
|
|
|
}
|
|
|
|
|
2023-07-20 14:18:43 +02:00
|
|
|
y4 += 4 * QK_K;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (int row = 0; row < N_DST; ++row) {
|
|
|
|
all_sum = simd_sum(sumf[row]);
|
|
|
|
if (tiisg == 0) {
|
2023-12-07 21:26:54 +01:00
|
|
|
dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum;
|
2023-07-20 14:18:43 +02:00
|
|
|
}
|
2023-06-08 09:08:23 +02:00
|
|
|
}
|
2023-07-20 14:18:43 +02:00
|
|
|
}
|
2023-06-08 18:46:22 +02:00
|
|
|
|
2023-12-13 13:04:25 +01:00
|
|
|
[[host_name("kernel_mul_mv_q4_K_f32")]]
|
|
|
|
kernel void kernel_mul_mv_q4_K_f32(
|
Metal implementation for all k_quants (#1807)
* metal : improve q4_K
28.3 -> 26.0 ms/token by avoiding a branch in the
calculation of the scales.
* metal : small improvement for Q4_K
* metal : still optimizing Q4_K
This commit pushes it down to 25.3 ms / token.
The crazy idea of using 6 bits for the scales is really costly on
Metal: if I remove the bit fiddling necessary to make the block
scales, time goes almost to the Q4_0 23 ms/token.
Before pushing the k-quants upstream I had a Q4_K variant that
had used 8-bit scales. It wasn't more accurate, used 0.125 bits more per weight,
was running slightly slower on the CPU (due to the larger model size
and being memory bound there), and the difference was entirely
negligible under CUDA. So, I decided to publish the version with 6-bit
scales. Perhaps I should re-consider and change to 8-bit scales?
* metal : some more optimizations
Q2_K: 25.4 ms/token
Q6_K: 27.3 ms/token
Q4_0: 22.8 ms/token
Q4_1: 23.1 ms/token
* metal : Q3_K support
Something is not quite right yet.
* metal : Q5_K support
Initial version achieves 31.2 ms/token, 210 GB/s
* metal : still not able to figure out why q3_K does not work
* Minor
* metal : yet another failed attempt to make q3_K work
* metal : optimize Q5_K
31.2 ms -> 27.8 ms.
250 GB/s.
* metal : q3_K still not working
Adding a heavily commented q3_K metal kernel to explain
my obviously faulty logic. Perhaps someone could spot the issue?
* metal : q3_K finally working
Not optimized at all.
What was the issue? The scales are not 4-bytes aligned,
and I was accessing them with a uint32_t pointer.
When I tried that on CUDA, I got an error (illegal memory access)
and added a memcpy to a local array of 3 uint32_t's.
But on Metal it told me there is no memcpy, so I tried
accessing directly. There is no error, just garbage results.
At some point I did try accessing the scales with an uint16_t
pointer (the scales are for sure 2-byte aligned), but was
still getting garbage. I guess, there must have been another bug.
No access to scales is via a uint16_t pointer and, after starting
from scratch from the C dequantize function, it finally works.
* metal : Q3_K 1st optimization pass
* metal : Q3_K second optimization pass - 29.6 ms/token
* metal : Q3_K cleanup
* metal : fixed accidentally broken Q2_K
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-12 21:39:21 +02:00
|
|
|
device const void * src0,
|
|
|
|
device const float * src1,
|
|
|
|
device float * dst,
|
|
|
|
constant int64_t & ne00,
|
2024-01-02 09:57:44 +01:00
|
|
|
constant int64_t & ne01,
|
|
|
|
constant int64_t & ne02,
|
|
|
|
constant uint64_t & nb00,
|
|
|
|
constant uint64_t & nb01,
|
|
|
|
constant uint64_t & nb02,
|
2024-10-25 21:26:15 +02:00
|
|
|
constant uint64_t & nb03,
|
2024-01-02 09:57:44 +01:00
|
|
|
constant int64_t & ne10,
|
|
|
|
constant int64_t & ne11,
|
|
|
|
constant int64_t & ne12,
|
|
|
|
constant uint64_t & nb10,
|
|
|
|
constant uint64_t & nb11,
|
|
|
|
constant uint64_t & nb12,
|
2024-10-25 21:26:15 +02:00
|
|
|
constant uint64_t & nb13,
|
2024-01-02 09:57:44 +01:00
|
|
|
constant int64_t & ne0,
|
|
|
|
constant int64_t & ne1,
|
|
|
|
constant uint & r2,
|
|
|
|
constant uint & r3,
|
2023-08-16 22:07:04 +02:00
|
|
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
2023-07-20 17:19:45 +02:00
|
|
|
uint tiisg[[thread_index_in_simdgroup]],
|
|
|
|
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
Metal implementation for all k_quants (#1807)
* metal : improve q4_K
28.3 -> 26.0 ms/token by avoiding a branch in the
calculation of the scales.
* metal : small improvement for Q4_K
* metal : still optimizing Q4_K
This commit pushes it down to 25.3 ms / token.
The crazy idea of using 6 bits for the scales is really costly on
Metal: if I remove the bit fiddling necessary to make the block
scales, time goes almost to the Q4_0 23 ms/token.
Before pushing the k-quants upstream I had a Q4_K variant that
had used 8-bit scales. It wasn't more accurate, used 0.125 bits more per weight,
was running slightly slower on the CPU (due to the larger model size
and being memory bound there), and the difference was entirely
negligible under CUDA. So, I decided to publish the version with 6-bit
scales. Perhaps I should re-consider and change to 8-bit scales?
* metal : some more optimizations
Q2_K: 25.4 ms/token
Q6_K: 27.3 ms/token
Q4_0: 22.8 ms/token
Q4_1: 23.1 ms/token
* metal : Q3_K support
Something is not quite right yet.
* metal : Q5_K support
Initial version achieves 31.2 ms/token, 210 GB/s
* metal : still not able to figure out why q3_K does not work
* Minor
* metal : yet another failed attempt to make q3_K work
* metal : optimize Q5_K
31.2 ms -> 27.8 ms.
250 GB/s.
* metal : q3_K still not working
Adding a heavily commented q3_K metal kernel to explain
my obviously faulty logic. Perhaps someone could spot the issue?
* metal : q3_K finally working
Not optimized at all.
What was the issue? The scales are not 4-bytes aligned,
and I was accessing them with a uint32_t pointer.
When I tried that on CUDA, I got an error (illegal memory access)
and added a memcpy to a local array of 3 uint32_t's.
But on Metal it told me there is no memcpy, so I tried
accessing directly. There is no error, just garbage results.
At some point I did try accessing the scales with an uint16_t
pointer (the scales are for sure 2-byte aligned), but was
still getting garbage. I guess, there must have been another bug.
No access to scales is via a uint16_t pointer and, after starting
from scratch from the C dequantize function, it finally works.
* metal : Q3_K 1st optimization pass
* metal : Q3_K second optimization pass - 29.6 ms/token
* metal : Q3_K cleanup
* metal : fixed accidentally broken Q2_K
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-12 21:39:21 +02:00
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
kernel_mul_mv_q4_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, nb01, nb02, nb03, ne10, ne12, nb11, nb12, nb13, ne0, ne1, r2, r3, nullptr, tgpig, tiisg, sgitg);
|
2023-12-13 13:04:25 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
void kernel_mul_mv_q5_K_f32_impl(
|
|
|
|
device const void * src0,
|
|
|
|
device const float * src1,
|
|
|
|
device float * dst,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne00,
|
|
|
|
int64_t ne01,
|
|
|
|
int64_t ne02,
|
2024-10-25 21:26:15 +02:00
|
|
|
uint64_t nb01,
|
|
|
|
uint64_t nb02,
|
|
|
|
uint64_t nb03,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne10,
|
|
|
|
int64_t ne12,
|
2024-10-25 21:26:15 +02:00
|
|
|
uint64_t nb11,
|
|
|
|
uint64_t nb12,
|
|
|
|
uint64_t nb13,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne0,
|
|
|
|
int64_t ne1,
|
|
|
|
uint r2,
|
|
|
|
uint r3,
|
|
|
|
threadgroup int8_t * shared_values,
|
|
|
|
uint3 tgpig,
|
|
|
|
uint tiisg,
|
|
|
|
uint sgitg) {
|
2023-12-13 13:04:25 +01:00
|
|
|
|
Metal implementation for all k_quants (#1807)
* metal : improve q4_K
28.3 -> 26.0 ms/token by avoiding a branch in the
calculation of the scales.
* metal : small improvement for Q4_K
* metal : still optimizing Q4_K
This commit pushes it down to 25.3 ms / token.
The crazy idea of using 6 bits for the scales is really costly on
Metal: if I remove the bit fiddling necessary to make the block
scales, time goes almost to the Q4_0 23 ms/token.
Before pushing the k-quants upstream I had a Q4_K variant that
had used 8-bit scales. It wasn't more accurate, used 0.125 bits more per weight,
was running slightly slower on the CPU (due to the larger model size
and being memory bound there), and the difference was entirely
negligible under CUDA. So, I decided to publish the version with 6-bit
scales. Perhaps I should re-consider and change to 8-bit scales?
* metal : some more optimizations
Q2_K: 25.4 ms/token
Q6_K: 27.3 ms/token
Q4_0: 22.8 ms/token
Q4_1: 23.1 ms/token
* metal : Q3_K support
Something is not quite right yet.
* metal : Q5_K support
Initial version achieves 31.2 ms/token, 210 GB/s
* metal : still not able to figure out why q3_K does not work
* Minor
* metal : yet another failed attempt to make q3_K work
* metal : optimize Q5_K
31.2 ms -> 27.8 ms.
250 GB/s.
* metal : q3_K still not working
Adding a heavily commented q3_K metal kernel to explain
my obviously faulty logic. Perhaps someone could spot the issue?
* metal : q3_K finally working
Not optimized at all.
What was the issue? The scales are not 4-bytes aligned,
and I was accessing them with a uint32_t pointer.
When I tried that on CUDA, I got an error (illegal memory access)
and added a memcpy to a local array of 3 uint32_t's.
But on Metal it told me there is no memcpy, so I tried
accessing directly. There is no error, just garbage results.
At some point I did try accessing the scales with an uint16_t
pointer (the scales are for sure 2-byte aligned), but was
still getting garbage. I guess, there must have been another bug.
No access to scales is via a uint16_t pointer and, after starting
from scratch from the C dequantize function, it finally works.
* metal : Q3_K 1st optimization pass
* metal : Q3_K second optimization pass - 29.6 ms/token
* metal : Q3_K cleanup
* metal : fixed accidentally broken Q2_K
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-12 21:39:21 +02:00
|
|
|
const int nb = ne00/QK_K;
|
|
|
|
|
|
|
|
const int64_t r0 = tgpig.x;
|
|
|
|
const int64_t r1 = tgpig.y;
|
2023-12-07 21:26:54 +01:00
|
|
|
const int im = tgpig.z;
|
Metal implementation for all k_quants (#1807)
* metal : improve q4_K
28.3 -> 26.0 ms/token by avoiding a branch in the
calculation of the scales.
* metal : small improvement for Q4_K
* metal : still optimizing Q4_K
This commit pushes it down to 25.3 ms / token.
The crazy idea of using 6 bits for the scales is really costly on
Metal: if I remove the bit fiddling necessary to make the block
scales, time goes almost to the Q4_0 23 ms/token.
Before pushing the k-quants upstream I had a Q4_K variant that
had used 8-bit scales. It wasn't more accurate, used 0.125 bits more per weight,
was running slightly slower on the CPU (due to the larger model size
and being memory bound there), and the difference was entirely
negligible under CUDA. So, I decided to publish the version with 6-bit
scales. Perhaps I should re-consider and change to 8-bit scales?
* metal : some more optimizations
Q2_K: 25.4 ms/token
Q6_K: 27.3 ms/token
Q4_0: 22.8 ms/token
Q4_1: 23.1 ms/token
* metal : Q3_K support
Something is not quite right yet.
* metal : Q5_K support
Initial version achieves 31.2 ms/token, 210 GB/s
* metal : still not able to figure out why q3_K does not work
* Minor
* metal : yet another failed attempt to make q3_K work
* metal : optimize Q5_K
31.2 ms -> 27.8 ms.
250 GB/s.
* metal : q3_K still not working
Adding a heavily commented q3_K metal kernel to explain
my obviously faulty logic. Perhaps someone could spot the issue?
* metal : q3_K finally working
Not optimized at all.
What was the issue? The scales are not 4-bytes aligned,
and I was accessing them with a uint32_t pointer.
When I tried that on CUDA, I got an error (illegal memory access)
and added a memcpy to a local array of 3 uint32_t's.
But on Metal it told me there is no memcpy, so I tried
accessing directly. There is no error, just garbage results.
At some point I did try accessing the scales with an uint16_t
pointer (the scales are for sure 2-byte aligned), but was
still getting garbage. I guess, there must have been another bug.
No access to scales is via a uint16_t pointer and, after starting
from scratch from the C dequantize function, it finally works.
* metal : Q3_K 1st optimization pass
* metal : Q3_K second optimization pass - 29.6 ms/token
* metal : Q3_K cleanup
* metal : fixed accidentally broken Q2_K
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-12 21:39:21 +02:00
|
|
|
|
2023-07-20 17:19:45 +02:00
|
|
|
const int first_row = (r0 * N_SIMDGROUP + sgitg) * 2;
|
2023-12-07 21:26:54 +01:00
|
|
|
|
|
|
|
const uint i12 = im%ne12;
|
|
|
|
const uint i13 = im/ne12;
|
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
const uint offset0 = first_row*nb01 + (i12/r2)*nb02 + (i13/r3)*nb03;
|
|
|
|
const uint offset1 = r1*nb11 + (i12 )*nb12 + (i13 )*nb13;
|
2023-12-07 21:26:54 +01:00
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
device const block_q5_K * x = (device const block_q5_K *) ((device char *) src0 + offset0);
|
|
|
|
device const float * yy = (device const float *) ((device char *) src1 + offset1);
|
Metal implementation for all k_quants (#1807)
* metal : improve q4_K
28.3 -> 26.0 ms/token by avoiding a branch in the
calculation of the scales.
* metal : small improvement for Q4_K
* metal : still optimizing Q4_K
This commit pushes it down to 25.3 ms / token.
The crazy idea of using 6 bits for the scales is really costly on
Metal: if I remove the bit fiddling necessary to make the block
scales, time goes almost to the Q4_0 23 ms/token.
Before pushing the k-quants upstream I had a Q4_K variant that
had used 8-bit scales. It wasn't more accurate, used 0.125 bits more per weight,
was running slightly slower on the CPU (due to the larger model size
and being memory bound there), and the difference was entirely
negligible under CUDA. So, I decided to publish the version with 6-bit
scales. Perhaps I should re-consider and change to 8-bit scales?
* metal : some more optimizations
Q2_K: 25.4 ms/token
Q6_K: 27.3 ms/token
Q4_0: 22.8 ms/token
Q4_1: 23.1 ms/token
* metal : Q3_K support
Something is not quite right yet.
* metal : Q5_K support
Initial version achieves 31.2 ms/token, 210 GB/s
* metal : still not able to figure out why q3_K does not work
* Minor
* metal : yet another failed attempt to make q3_K work
* metal : optimize Q5_K
31.2 ms -> 27.8 ms.
250 GB/s.
* metal : q3_K still not working
Adding a heavily commented q3_K metal kernel to explain
my obviously faulty logic. Perhaps someone could spot the issue?
* metal : q3_K finally working
Not optimized at all.
What was the issue? The scales are not 4-bytes aligned,
and I was accessing them with a uint32_t pointer.
When I tried that on CUDA, I got an error (illegal memory access)
and added a memcpy to a local array of 3 uint32_t's.
But on Metal it told me there is no memcpy, so I tried
accessing directly. There is no error, just garbage results.
At some point I did try accessing the scales with an uint16_t
pointer (the scales are for sure 2-byte aligned), but was
still getting garbage. I guess, there must have been another bug.
No access to scales is via a uint16_t pointer and, after starting
from scratch from the C dequantize function, it finally works.
* metal : Q3_K 1st optimization pass
* metal : Q3_K second optimization pass - 29.6 ms/token
* metal : Q3_K cleanup
* metal : fixed accidentally broken Q2_K
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-12 21:39:21 +02:00
|
|
|
|
2023-07-20 17:19:45 +02:00
|
|
|
float sumf[2]={0.f};
|
Metal implementation for all k_quants (#1807)
* metal : improve q4_K
28.3 -> 26.0 ms/token by avoiding a branch in the
calculation of the scales.
* metal : small improvement for Q4_K
* metal : still optimizing Q4_K
This commit pushes it down to 25.3 ms / token.
The crazy idea of using 6 bits for the scales is really costly on
Metal: if I remove the bit fiddling necessary to make the block
scales, time goes almost to the Q4_0 23 ms/token.
Before pushing the k-quants upstream I had a Q4_K variant that
had used 8-bit scales. It wasn't more accurate, used 0.125 bits more per weight,
was running slightly slower on the CPU (due to the larger model size
and being memory bound there), and the difference was entirely
negligible under CUDA. So, I decided to publish the version with 6-bit
scales. Perhaps I should re-consider and change to 8-bit scales?
* metal : some more optimizations
Q2_K: 25.4 ms/token
Q6_K: 27.3 ms/token
Q4_0: 22.8 ms/token
Q4_1: 23.1 ms/token
* metal : Q3_K support
Something is not quite right yet.
* metal : Q5_K support
Initial version achieves 31.2 ms/token, 210 GB/s
* metal : still not able to figure out why q3_K does not work
* Minor
* metal : yet another failed attempt to make q3_K work
* metal : optimize Q5_K
31.2 ms -> 27.8 ms.
250 GB/s.
* metal : q3_K still not working
Adding a heavily commented q3_K metal kernel to explain
my obviously faulty logic. Perhaps someone could spot the issue?
* metal : q3_K finally working
Not optimized at all.
What was the issue? The scales are not 4-bytes aligned,
and I was accessing them with a uint32_t pointer.
When I tried that on CUDA, I got an error (illegal memory access)
and added a memcpy to a local array of 3 uint32_t's.
But on Metal it told me there is no memcpy, so I tried
accessing directly. There is no error, just garbage results.
At some point I did try accessing the scales with an uint16_t
pointer (the scales are for sure 2-byte aligned), but was
still getting garbage. I guess, there must have been another bug.
No access to scales is via a uint16_t pointer and, after starting
from scratch from the C dequantize function, it finally works.
* metal : Q3_K 1st optimization pass
* metal : Q3_K second optimization pass - 29.6 ms/token
* metal : Q3_K cleanup
* metal : fixed accidentally broken Q2_K
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-12 21:39:21 +02:00
|
|
|
|
2023-07-20 17:19:45 +02:00
|
|
|
float yl[16], yh[16];
|
k-quants : support for super-block size of 64 (#2001)
* k_quants: WIP super-blocks with 64 weights
* k_quants: WIP super-blocks with 64 weights
Q6_K scalar and AVX2 works
* k_quants: WIP super-blocks with 64 weights
Q4_K scalar and AVX2 works
* k_quants: WIP super-blocks with 64 weights
Q2_K scalar and AVX2 works. Q2_K is way too slow (it is actually slower
than the scalar implementation)
* k_quants: WIP super-blocks with 64 weights
Q3_K scalar and AVX2 works.
* k_quants: WIP super-blocks with 64 weights
Q5_K scalar and AVX2 works, and with that all
k_quants are done on AVX2 and scalar
* k_quants: WIP super-blocks with 64 weights
Q6_K working on CUDA. Cannot make it run quite as gast as
with super-blocks with 256 weigths: 8% slower on 4080,
20% slower on the 1660 (but there we fit 1 less layer on the
GPU because pf the larger model size), so some fraction of
these 20% is due to that,
* k_quants: WIP super-blocks with 64 weights
Q4_K working on CUDA. ~10% slower on GTX-1660,
16% slower on 4080.
* k_quants: WIP super-blocks with 64 weights
Q2_K working on CUDA. ~3% slower on GTX-1660,
10% slower on 4080.
* k_quants: WIP super-blocks with 64 weights
Q3_K working on CUDA.
* k_quants: WIP super-blocks with 64 weights
Q5_K working on CUDA, and with this CUDA is done.
* k_quants: WIP super-blocks with 64 weights
Q6_K working on ARM_NEON
* k_quants: WIP super-blocks with 64 weights
Q4_K working on ARM_NEON, but quite a bit slower than 256 weights
* k_quants: WIP super-blocks with 64 weights
Q2_K working on ARM_NEON, but quite a bit slower than 256 weights
* k_quants: WIP super-blocks with 64 weights
Q3_K working on ARM_NEON, but quite a bit slower than 256 weights.
* k_quants: WIP super-blocks with 64 weights
Q5_K working on ARM_NEON, but quite a bit slower than 256 weights.
With that, we have full support for ARM_NEON, although
performance is not quite there.
* k_quants: WIP super-blocks with 64 weights
Slightly more efficient Q3_K and Q5_K
* k_quants: WIP super-blocks with 64 weights
Another small improvement for Q3_K and Q5_K on ARM_NEON
* k_quants: WIP super-blocks with 64 weights
Yet another speedup for Q5_K on ARM_NEON.
We are now within 10% of the QK_K = 256 version.
* k_quants: WIP super-blocks with 64 weights
* We are able to pass preprocessor macros to the Metal
compiler
* Q6_K works and is actually slightly more efficient than
the QK_K = 256 version (25.2 ms vs 25.8 ms)
* k_quants: WIP super-blocks with 64 weights
Q4_K works on Metal and is actually slightly faster
than QK_K = 256 (21.95 ms vs 24.0 ms).
* k_quants: WIP super-blocks with 64 weights
Q2_K works on Metal and is very slightly faster
than QK_K = 256 (23.8 ms vs 24.2 ms).
* k_quants: WIP super-blocks with 64 weights
Q3_K works on Metal and is slightly faster
than QK_K = 256 (26.6 ms vs 28.3 ms).
* k_quants: WIP super-blocks with 64 weights
Q5_K works on Metal and is slightly faster
than QK_K = 256 (23.7 ms vs 26.3 ms).
* k_quants: call them _K, not _k, also on Metal
* k_quants: correctly define QK_K in llama.cpp
* Fixed bug in q4_K quantization added with the 64-block addition
* Simplify via lambda
* k_quants: swicth Q3_K to 4-bit scales when QK_K = 64
Otherwise there isn't much benefit from this
quantization type. There is some very slight loss
in accuracy, but we reduce size by ~7%.
E.g., for OpenLLaMA-3B, Q3_K_S perplexity is
8.6131 with 8-bit scales and 8.6352 with 4-bit,
while file size decreases from 1.53G to 1.44G.
* k_quants: switch Q4_K to 4-bit scales when QK_K = 64
Here the loss in accuracy is greater than for Q3_K,
but the Q4_K points still move further to the left on
the perplexity vs size curve.
* k_quants: forgot to add the Metal changes in last commit
* k_quants: change Q5_K to be type 0 when QK_K = 64
Still needs AVX2 implementation
* k_quants: AVX2 implementation for new 64-weight Q5_K
* k_quants: 10% faster ARM_NEON Q5_K dot product
* k_quants: fixed issue caused by merging with master
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-26 18:43:07 +02:00
|
|
|
|
|
|
|
const uint16_t kmask1 = 0x3f3f;
|
|
|
|
const uint16_t kmask2 = 0x0f0f;
|
|
|
|
const uint16_t kmask3 = 0xc0c0;
|
|
|
|
|
2023-07-20 17:19:45 +02:00
|
|
|
const int tid = tiisg/4;
|
|
|
|
const int ix = tiisg%4;
|
2023-12-07 21:26:54 +01:00
|
|
|
const int iq = tid/4;
|
2023-07-20 17:19:45 +02:00
|
|
|
const int ir = tid%4;
|
|
|
|
const int n = 8;
|
Metal implementation for all k_quants (#1807)
* metal : improve q4_K
28.3 -> 26.0 ms/token by avoiding a branch in the
calculation of the scales.
* metal : small improvement for Q4_K
* metal : still optimizing Q4_K
This commit pushes it down to 25.3 ms / token.
The crazy idea of using 6 bits for the scales is really costly on
Metal: if I remove the bit fiddling necessary to make the block
scales, time goes almost to the Q4_0 23 ms/token.
Before pushing the k-quants upstream I had a Q4_K variant that
had used 8-bit scales. It wasn't more accurate, used 0.125 bits more per weight,
was running slightly slower on the CPU (due to the larger model size
and being memory bound there), and the difference was entirely
negligible under CUDA. So, I decided to publish the version with 6-bit
scales. Perhaps I should re-consider and change to 8-bit scales?
* metal : some more optimizations
Q2_K: 25.4 ms/token
Q6_K: 27.3 ms/token
Q4_0: 22.8 ms/token
Q4_1: 23.1 ms/token
* metal : Q3_K support
Something is not quite right yet.
* metal : Q5_K support
Initial version achieves 31.2 ms/token, 210 GB/s
* metal : still not able to figure out why q3_K does not work
* Minor
* metal : yet another failed attempt to make q3_K work
* metal : optimize Q5_K
31.2 ms -> 27.8 ms.
250 GB/s.
* metal : q3_K still not working
Adding a heavily commented q3_K metal kernel to explain
my obviously faulty logic. Perhaps someone could spot the issue?
* metal : q3_K finally working
Not optimized at all.
What was the issue? The scales are not 4-bytes aligned,
and I was accessing them with a uint32_t pointer.
When I tried that on CUDA, I got an error (illegal memory access)
and added a memcpy to a local array of 3 uint32_t's.
But on Metal it told me there is no memcpy, so I tried
accessing directly. There is no error, just garbage results.
At some point I did try accessing the scales with an uint16_t
pointer (the scales are for sure 2-byte aligned), but was
still getting garbage. I guess, there must have been another bug.
No access to scales is via a uint16_t pointer and, after starting
from scratch from the C dequantize function, it finally works.
* metal : Q3_K 1st optimization pass
* metal : Q3_K second optimization pass - 29.6 ms/token
* metal : Q3_K cleanup
* metal : fixed accidentally broken Q2_K
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-12 21:39:21 +02:00
|
|
|
|
2023-07-20 17:19:45 +02:00
|
|
|
const int l0 = n*ir;
|
2023-12-07 21:26:54 +01:00
|
|
|
const int q_offset = 32*iq + l0;
|
|
|
|
const int y_offset = 64*iq + l0;
|
Metal implementation for all k_quants (#1807)
* metal : improve q4_K
28.3 -> 26.0 ms/token by avoiding a branch in the
calculation of the scales.
* metal : small improvement for Q4_K
* metal : still optimizing Q4_K
This commit pushes it down to 25.3 ms / token.
The crazy idea of using 6 bits for the scales is really costly on
Metal: if I remove the bit fiddling necessary to make the block
scales, time goes almost to the Q4_0 23 ms/token.
Before pushing the k-quants upstream I had a Q4_K variant that
had used 8-bit scales. It wasn't more accurate, used 0.125 bits more per weight,
was running slightly slower on the CPU (due to the larger model size
and being memory bound there), and the difference was entirely
negligible under CUDA. So, I decided to publish the version with 6-bit
scales. Perhaps I should re-consider and change to 8-bit scales?
* metal : some more optimizations
Q2_K: 25.4 ms/token
Q6_K: 27.3 ms/token
Q4_0: 22.8 ms/token
Q4_1: 23.1 ms/token
* metal : Q3_K support
Something is not quite right yet.
* metal : Q5_K support
Initial version achieves 31.2 ms/token, 210 GB/s
* metal : still not able to figure out why q3_K does not work
* Minor
* metal : yet another failed attempt to make q3_K work
* metal : optimize Q5_K
31.2 ms -> 27.8 ms.
250 GB/s.
* metal : q3_K still not working
Adding a heavily commented q3_K metal kernel to explain
my obviously faulty logic. Perhaps someone could spot the issue?
* metal : q3_K finally working
Not optimized at all.
What was the issue? The scales are not 4-bytes aligned,
and I was accessing them with a uint32_t pointer.
When I tried that on CUDA, I got an error (illegal memory access)
and added a memcpy to a local array of 3 uint32_t's.
But on Metal it told me there is no memcpy, so I tried
accessing directly. There is no error, just garbage results.
At some point I did try accessing the scales with an uint16_t
pointer (the scales are for sure 2-byte aligned), but was
still getting garbage. I guess, there must have been another bug.
No access to scales is via a uint16_t pointer and, after starting
from scratch from the C dequantize function, it finally works.
* metal : Q3_K 1st optimization pass
* metal : Q3_K second optimization pass - 29.6 ms/token
* metal : Q3_K cleanup
* metal : fixed accidentally broken Q2_K
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-12 21:39:21 +02:00
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
const uint8_t hm1 = 1u << (2*iq);
|
Metal implementation for all k_quants (#1807)
* metal : improve q4_K
28.3 -> 26.0 ms/token by avoiding a branch in the
calculation of the scales.
* metal : small improvement for Q4_K
* metal : still optimizing Q4_K
This commit pushes it down to 25.3 ms / token.
The crazy idea of using 6 bits for the scales is really costly on
Metal: if I remove the bit fiddling necessary to make the block
scales, time goes almost to the Q4_0 23 ms/token.
Before pushing the k-quants upstream I had a Q4_K variant that
had used 8-bit scales. It wasn't more accurate, used 0.125 bits more per weight,
was running slightly slower on the CPU (due to the larger model size
and being memory bound there), and the difference was entirely
negligible under CUDA. So, I decided to publish the version with 6-bit
scales. Perhaps I should re-consider and change to 8-bit scales?
* metal : some more optimizations
Q2_K: 25.4 ms/token
Q6_K: 27.3 ms/token
Q4_0: 22.8 ms/token
Q4_1: 23.1 ms/token
* metal : Q3_K support
Something is not quite right yet.
* metal : Q5_K support
Initial version achieves 31.2 ms/token, 210 GB/s
* metal : still not able to figure out why q3_K does not work
* Minor
* metal : yet another failed attempt to make q3_K work
* metal : optimize Q5_K
31.2 ms -> 27.8 ms.
250 GB/s.
* metal : q3_K still not working
Adding a heavily commented q3_K metal kernel to explain
my obviously faulty logic. Perhaps someone could spot the issue?
* metal : q3_K finally working
Not optimized at all.
What was the issue? The scales are not 4-bytes aligned,
and I was accessing them with a uint32_t pointer.
When I tried that on CUDA, I got an error (illegal memory access)
and added a memcpy to a local array of 3 uint32_t's.
But on Metal it told me there is no memcpy, so I tried
accessing directly. There is no error, just garbage results.
At some point I did try accessing the scales with an uint16_t
pointer (the scales are for sure 2-byte aligned), but was
still getting garbage. I guess, there must have been another bug.
No access to scales is via a uint16_t pointer and, after starting
from scratch from the C dequantize function, it finally works.
* metal : Q3_K 1st optimization pass
* metal : Q3_K second optimization pass - 29.6 ms/token
* metal : Q3_K cleanup
* metal : fixed accidentally broken Q2_K
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-12 21:39:21 +02:00
|
|
|
const uint8_t hm2 = hm1 << 1;
|
|
|
|
const uint8_t hm3 = hm1 << 4;
|
|
|
|
const uint8_t hm4 = hm2 << 4;
|
|
|
|
|
2023-07-20 17:19:45 +02:00
|
|
|
uint16_t sc16[4];
|
|
|
|
thread const uint8_t * sc8 = (thread const uint8_t *)sc16;
|
Metal implementation for all k_quants (#1807)
* metal : improve q4_K
28.3 -> 26.0 ms/token by avoiding a branch in the
calculation of the scales.
* metal : small improvement for Q4_K
* metal : still optimizing Q4_K
This commit pushes it down to 25.3 ms / token.
The crazy idea of using 6 bits for the scales is really costly on
Metal: if I remove the bit fiddling necessary to make the block
scales, time goes almost to the Q4_0 23 ms/token.
Before pushing the k-quants upstream I had a Q4_K variant that
had used 8-bit scales. It wasn't more accurate, used 0.125 bits more per weight,
was running slightly slower on the CPU (due to the larger model size
and being memory bound there), and the difference was entirely
negligible under CUDA. So, I decided to publish the version with 6-bit
scales. Perhaps I should re-consider and change to 8-bit scales?
* metal : some more optimizations
Q2_K: 25.4 ms/token
Q6_K: 27.3 ms/token
Q4_0: 22.8 ms/token
Q4_1: 23.1 ms/token
* metal : Q3_K support
Something is not quite right yet.
* metal : Q5_K support
Initial version achieves 31.2 ms/token, 210 GB/s
* metal : still not able to figure out why q3_K does not work
* Minor
* metal : yet another failed attempt to make q3_K work
* metal : optimize Q5_K
31.2 ms -> 27.8 ms.
250 GB/s.
* metal : q3_K still not working
Adding a heavily commented q3_K metal kernel to explain
my obviously faulty logic. Perhaps someone could spot the issue?
* metal : q3_K finally working
Not optimized at all.
What was the issue? The scales are not 4-bytes aligned,
and I was accessing them with a uint32_t pointer.
When I tried that on CUDA, I got an error (illegal memory access)
and added a memcpy to a local array of 3 uint32_t's.
But on Metal it told me there is no memcpy, so I tried
accessing directly. There is no error, just garbage results.
At some point I did try accessing the scales with an uint16_t
pointer (the scales are for sure 2-byte aligned), but was
still getting garbage. I guess, there must have been another bug.
No access to scales is via a uint16_t pointer and, after starting
from scratch from the C dequantize function, it finally works.
* metal : Q3_K 1st optimization pass
* metal : Q3_K second optimization pass - 29.6 ms/token
* metal : Q3_K cleanup
* metal : fixed accidentally broken Q2_K
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-12 21:39:21 +02:00
|
|
|
|
2023-07-20 17:19:45 +02:00
|
|
|
device const float * y1 = yy + ix*QK_K + y_offset;
|
Metal implementation for all k_quants (#1807)
* metal : improve q4_K
28.3 -> 26.0 ms/token by avoiding a branch in the
calculation of the scales.
* metal : small improvement for Q4_K
* metal : still optimizing Q4_K
This commit pushes it down to 25.3 ms / token.
The crazy idea of using 6 bits for the scales is really costly on
Metal: if I remove the bit fiddling necessary to make the block
scales, time goes almost to the Q4_0 23 ms/token.
Before pushing the k-quants upstream I had a Q4_K variant that
had used 8-bit scales. It wasn't more accurate, used 0.125 bits more per weight,
was running slightly slower on the CPU (due to the larger model size
and being memory bound there), and the difference was entirely
negligible under CUDA. So, I decided to publish the version with 6-bit
scales. Perhaps I should re-consider and change to 8-bit scales?
* metal : some more optimizations
Q2_K: 25.4 ms/token
Q6_K: 27.3 ms/token
Q4_0: 22.8 ms/token
Q4_1: 23.1 ms/token
* metal : Q3_K support
Something is not quite right yet.
* metal : Q5_K support
Initial version achieves 31.2 ms/token, 210 GB/s
* metal : still not able to figure out why q3_K does not work
* Minor
* metal : yet another failed attempt to make q3_K work
* metal : optimize Q5_K
31.2 ms -> 27.8 ms.
250 GB/s.
* metal : q3_K still not working
Adding a heavily commented q3_K metal kernel to explain
my obviously faulty logic. Perhaps someone could spot the issue?
* metal : q3_K finally working
Not optimized at all.
What was the issue? The scales are not 4-bytes aligned,
and I was accessing them with a uint32_t pointer.
When I tried that on CUDA, I got an error (illegal memory access)
and added a memcpy to a local array of 3 uint32_t's.
But on Metal it told me there is no memcpy, so I tried
accessing directly. There is no error, just garbage results.
At some point I did try accessing the scales with an uint16_t
pointer (the scales are for sure 2-byte aligned), but was
still getting garbage. I guess, there must have been another bug.
No access to scales is via a uint16_t pointer and, after starting
from scratch from the C dequantize function, it finally works.
* metal : Q3_K 1st optimization pass
* metal : Q3_K second optimization pass - 29.6 ms/token
* metal : Q3_K cleanup
* metal : fixed accidentally broken Q2_K
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-12 21:39:21 +02:00
|
|
|
|
2023-07-20 17:19:45 +02:00
|
|
|
for (int i = ix; i < nb; i += 4) {
|
|
|
|
device const uint8_t * q1 = x[i].qs + q_offset;
|
|
|
|
device const uint8_t * qh = x[i].qh + l0;
|
|
|
|
device const half * dh = &x[i].d;
|
2023-12-07 21:26:54 +01:00
|
|
|
device const uint16_t * a = (device const uint16_t *)x[i].scales + iq;
|
Metal implementation for all k_quants (#1807)
* metal : improve q4_K
28.3 -> 26.0 ms/token by avoiding a branch in the
calculation of the scales.
* metal : small improvement for Q4_K
* metal : still optimizing Q4_K
This commit pushes it down to 25.3 ms / token.
The crazy idea of using 6 bits for the scales is really costly on
Metal: if I remove the bit fiddling necessary to make the block
scales, time goes almost to the Q4_0 23 ms/token.
Before pushing the k-quants upstream I had a Q4_K variant that
had used 8-bit scales. It wasn't more accurate, used 0.125 bits more per weight,
was running slightly slower on the CPU (due to the larger model size
and being memory bound there), and the difference was entirely
negligible under CUDA. So, I decided to publish the version with 6-bit
scales. Perhaps I should re-consider and change to 8-bit scales?
* metal : some more optimizations
Q2_K: 25.4 ms/token
Q6_K: 27.3 ms/token
Q4_0: 22.8 ms/token
Q4_1: 23.1 ms/token
* metal : Q3_K support
Something is not quite right yet.
* metal : Q5_K support
Initial version achieves 31.2 ms/token, 210 GB/s
* metal : still not able to figure out why q3_K does not work
* Minor
* metal : yet another failed attempt to make q3_K work
* metal : optimize Q5_K
31.2 ms -> 27.8 ms.
250 GB/s.
* metal : q3_K still not working
Adding a heavily commented q3_K metal kernel to explain
my obviously faulty logic. Perhaps someone could spot the issue?
* metal : q3_K finally working
Not optimized at all.
What was the issue? The scales are not 4-bytes aligned,
and I was accessing them with a uint32_t pointer.
When I tried that on CUDA, I got an error (illegal memory access)
and added a memcpy to a local array of 3 uint32_t's.
But on Metal it told me there is no memcpy, so I tried
accessing directly. There is no error, just garbage results.
At some point I did try accessing the scales with an uint16_t
pointer (the scales are for sure 2-byte aligned), but was
still getting garbage. I guess, there must have been another bug.
No access to scales is via a uint16_t pointer and, after starting
from scratch from the C dequantize function, it finally works.
* metal : Q3_K 1st optimization pass
* metal : Q3_K second optimization pass - 29.6 ms/token
* metal : Q3_K cleanup
* metal : fixed accidentally broken Q2_K
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-12 21:39:21 +02:00
|
|
|
|
2023-07-20 17:19:45 +02:00
|
|
|
device const float * y2 = y1 + 128;
|
|
|
|
float4 sumy = {0.f, 0.f, 0.f, 0.f};
|
|
|
|
for (int l = 0; l < 8; ++l) {
|
|
|
|
yl[l+0] = y1[l+ 0]; sumy[0] += yl[l+0];
|
|
|
|
yl[l+8] = y1[l+32]; sumy[1] += yl[l+8];
|
|
|
|
yh[l+0] = y2[l+ 0]; sumy[2] += yh[l+0];
|
|
|
|
yh[l+8] = y2[l+32]; sumy[3] += yh[l+8];
|
|
|
|
}
|
Metal implementation for all k_quants (#1807)
* metal : improve q4_K
28.3 -> 26.0 ms/token by avoiding a branch in the
calculation of the scales.
* metal : small improvement for Q4_K
* metal : still optimizing Q4_K
This commit pushes it down to 25.3 ms / token.
The crazy idea of using 6 bits for the scales is really costly on
Metal: if I remove the bit fiddling necessary to make the block
scales, time goes almost to the Q4_0 23 ms/token.
Before pushing the k-quants upstream I had a Q4_K variant that
had used 8-bit scales. It wasn't more accurate, used 0.125 bits more per weight,
was running slightly slower on the CPU (due to the larger model size
and being memory bound there), and the difference was entirely
negligible under CUDA. So, I decided to publish the version with 6-bit
scales. Perhaps I should re-consider and change to 8-bit scales?
* metal : some more optimizations
Q2_K: 25.4 ms/token
Q6_K: 27.3 ms/token
Q4_0: 22.8 ms/token
Q4_1: 23.1 ms/token
* metal : Q3_K support
Something is not quite right yet.
* metal : Q5_K support
Initial version achieves 31.2 ms/token, 210 GB/s
* metal : still not able to figure out why q3_K does not work
* Minor
* metal : yet another failed attempt to make q3_K work
* metal : optimize Q5_K
31.2 ms -> 27.8 ms.
250 GB/s.
* metal : q3_K still not working
Adding a heavily commented q3_K metal kernel to explain
my obviously faulty logic. Perhaps someone could spot the issue?
* metal : q3_K finally working
Not optimized at all.
What was the issue? The scales are not 4-bytes aligned,
and I was accessing them with a uint32_t pointer.
When I tried that on CUDA, I got an error (illegal memory access)
and added a memcpy to a local array of 3 uint32_t's.
But on Metal it told me there is no memcpy, so I tried
accessing directly. There is no error, just garbage results.
At some point I did try accessing the scales with an uint16_t
pointer (the scales are for sure 2-byte aligned), but was
still getting garbage. I guess, there must have been another bug.
No access to scales is via a uint16_t pointer and, after starting
from scratch from the C dequantize function, it finally works.
* metal : Q3_K 1st optimization pass
* metal : Q3_K second optimization pass - 29.6 ms/token
* metal : Q3_K cleanup
* metal : fixed accidentally broken Q2_K
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-12 21:39:21 +02:00
|
|
|
|
2023-07-20 17:19:45 +02:00
|
|
|
for (int row = 0; row < 2; ++row) {
|
|
|
|
device const uint8_t * q2 = q1 + 64;
|
|
|
|
|
|
|
|
sc16[0] = a[0] & kmask1;
|
|
|
|
sc16[1] = a[2] & kmask1;
|
|
|
|
sc16[2] = ((a[4] >> 0) & kmask2) | ((a[0] & kmask3) >> 2);
|
|
|
|
sc16[3] = ((a[4] >> 4) & kmask2) | ((a[2] & kmask3) >> 2);
|
|
|
|
|
2023-09-08 18:01:04 +02:00
|
|
|
float4 acc1 = {0.f};
|
|
|
|
float4 acc2 = {0.f};
|
2023-07-20 17:19:45 +02:00
|
|
|
for (int l = 0; l < n; ++l) {
|
|
|
|
uint8_t h = qh[l];
|
2023-09-08 18:01:04 +02:00
|
|
|
acc1[0] += yl[l+0] * (q1[l] & 0x0F);
|
|
|
|
acc1[1] += yl[l+8] * (q1[l] & 0xF0);
|
|
|
|
acc1[2] += yh[l+0] * (q2[l] & 0x0F);
|
|
|
|
acc1[3] += yh[l+8] * (q2[l] & 0xF0);
|
|
|
|
acc2[0] += h & hm1 ? yl[l+0] : 0.f;
|
|
|
|
acc2[1] += h & hm2 ? yl[l+8] : 0.f;
|
|
|
|
acc2[2] += h & hm3 ? yh[l+0] : 0.f;
|
|
|
|
acc2[3] += h & hm4 ? yh[l+8] : 0.f;
|
2023-07-20 17:19:45 +02:00
|
|
|
}
|
|
|
|
const float dall = dh[0];
|
|
|
|
const float dmin = dh[1];
|
2023-09-08 18:01:04 +02:00
|
|
|
sumf[row] += dall * (sc8[0] * (acc1[0] + 16.f*acc2[0]) +
|
|
|
|
sc8[1] * (acc1[1]/16.f + 16.f*acc2[1]) +
|
|
|
|
sc8[4] * (acc1[2] + 16.f*acc2[2]) +
|
|
|
|
sc8[5] * (acc1[3]/16.f + 16.f*acc2[3])) -
|
2023-07-20 17:19:45 +02:00
|
|
|
dmin * (sumy[0] * sc8[2] + sumy[1] * sc8[3] + sumy[2] * sc8[6] + sumy[3] * sc8[7]);
|
Metal implementation for all k_quants (#1807)
* metal : improve q4_K
28.3 -> 26.0 ms/token by avoiding a branch in the
calculation of the scales.
* metal : small improvement for Q4_K
* metal : still optimizing Q4_K
This commit pushes it down to 25.3 ms / token.
The crazy idea of using 6 bits for the scales is really costly on
Metal: if I remove the bit fiddling necessary to make the block
scales, time goes almost to the Q4_0 23 ms/token.
Before pushing the k-quants upstream I had a Q4_K variant that
had used 8-bit scales. It wasn't more accurate, used 0.125 bits more per weight,
was running slightly slower on the CPU (due to the larger model size
and being memory bound there), and the difference was entirely
negligible under CUDA. So, I decided to publish the version with 6-bit
scales. Perhaps I should re-consider and change to 8-bit scales?
* metal : some more optimizations
Q2_K: 25.4 ms/token
Q6_K: 27.3 ms/token
Q4_0: 22.8 ms/token
Q4_1: 23.1 ms/token
* metal : Q3_K support
Something is not quite right yet.
* metal : Q5_K support
Initial version achieves 31.2 ms/token, 210 GB/s
* metal : still not able to figure out why q3_K does not work
* Minor
* metal : yet another failed attempt to make q3_K work
* metal : optimize Q5_K
31.2 ms -> 27.8 ms.
250 GB/s.
* metal : q3_K still not working
Adding a heavily commented q3_K metal kernel to explain
my obviously faulty logic. Perhaps someone could spot the issue?
* metal : q3_K finally working
Not optimized at all.
What was the issue? The scales are not 4-bytes aligned,
and I was accessing them with a uint32_t pointer.
When I tried that on CUDA, I got an error (illegal memory access)
and added a memcpy to a local array of 3 uint32_t's.
But on Metal it told me there is no memcpy, so I tried
accessing directly. There is no error, just garbage results.
At some point I did try accessing the scales with an uint16_t
pointer (the scales are for sure 2-byte aligned), but was
still getting garbage. I guess, there must have been another bug.
No access to scales is via a uint16_t pointer and, after starting
from scratch from the C dequantize function, it finally works.
* metal : Q3_K 1st optimization pass
* metal : Q3_K second optimization pass - 29.6 ms/token
* metal : Q3_K cleanup
* metal : fixed accidentally broken Q2_K
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-12 21:39:21 +02:00
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
q1 += nb01;
|
|
|
|
qh += nb01;
|
|
|
|
dh += nb01/2;
|
|
|
|
a += nb01/2;
|
Metal implementation for all k_quants (#1807)
* metal : improve q4_K
28.3 -> 26.0 ms/token by avoiding a branch in the
calculation of the scales.
* metal : small improvement for Q4_K
* metal : still optimizing Q4_K
This commit pushes it down to 25.3 ms / token.
The crazy idea of using 6 bits for the scales is really costly on
Metal: if I remove the bit fiddling necessary to make the block
scales, time goes almost to the Q4_0 23 ms/token.
Before pushing the k-quants upstream I had a Q4_K variant that
had used 8-bit scales. It wasn't more accurate, used 0.125 bits more per weight,
was running slightly slower on the CPU (due to the larger model size
and being memory bound there), and the difference was entirely
negligible under CUDA. So, I decided to publish the version with 6-bit
scales. Perhaps I should re-consider and change to 8-bit scales?
* metal : some more optimizations
Q2_K: 25.4 ms/token
Q6_K: 27.3 ms/token
Q4_0: 22.8 ms/token
Q4_1: 23.1 ms/token
* metal : Q3_K support
Something is not quite right yet.
* metal : Q5_K support
Initial version achieves 31.2 ms/token, 210 GB/s
* metal : still not able to figure out why q3_K does not work
* Minor
* metal : yet another failed attempt to make q3_K work
* metal : optimize Q5_K
31.2 ms -> 27.8 ms.
250 GB/s.
* metal : q3_K still not working
Adding a heavily commented q3_K metal kernel to explain
my obviously faulty logic. Perhaps someone could spot the issue?
* metal : q3_K finally working
Not optimized at all.
What was the issue? The scales are not 4-bytes aligned,
and I was accessing them with a uint32_t pointer.
When I tried that on CUDA, I got an error (illegal memory access)
and added a memcpy to a local array of 3 uint32_t's.
But on Metal it told me there is no memcpy, so I tried
accessing directly. There is no error, just garbage results.
At some point I did try accessing the scales with an uint16_t
pointer (the scales are for sure 2-byte aligned), but was
still getting garbage. I guess, there must have been another bug.
No access to scales is via a uint16_t pointer and, after starting
from scratch from the C dequantize function, it finally works.
* metal : Q3_K 1st optimization pass
* metal : Q3_K second optimization pass - 29.6 ms/token
* metal : Q3_K cleanup
* metal : fixed accidentally broken Q2_K
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-12 21:39:21 +02:00
|
|
|
}
|
2023-07-20 17:19:45 +02:00
|
|
|
|
|
|
|
y1 += 4 * QK_K;
|
Metal implementation for all k_quants (#1807)
* metal : improve q4_K
28.3 -> 26.0 ms/token by avoiding a branch in the
calculation of the scales.
* metal : small improvement for Q4_K
* metal : still optimizing Q4_K
This commit pushes it down to 25.3 ms / token.
The crazy idea of using 6 bits for the scales is really costly on
Metal: if I remove the bit fiddling necessary to make the block
scales, time goes almost to the Q4_0 23 ms/token.
Before pushing the k-quants upstream I had a Q4_K variant that
had used 8-bit scales. It wasn't more accurate, used 0.125 bits more per weight,
was running slightly slower on the CPU (due to the larger model size
and being memory bound there), and the difference was entirely
negligible under CUDA. So, I decided to publish the version with 6-bit
scales. Perhaps I should re-consider and change to 8-bit scales?
* metal : some more optimizations
Q2_K: 25.4 ms/token
Q6_K: 27.3 ms/token
Q4_0: 22.8 ms/token
Q4_1: 23.1 ms/token
* metal : Q3_K support
Something is not quite right yet.
* metal : Q5_K support
Initial version achieves 31.2 ms/token, 210 GB/s
* metal : still not able to figure out why q3_K does not work
* Minor
* metal : yet another failed attempt to make q3_K work
* metal : optimize Q5_K
31.2 ms -> 27.8 ms.
250 GB/s.
* metal : q3_K still not working
Adding a heavily commented q3_K metal kernel to explain
my obviously faulty logic. Perhaps someone could spot the issue?
* metal : q3_K finally working
Not optimized at all.
What was the issue? The scales are not 4-bytes aligned,
and I was accessing them with a uint32_t pointer.
When I tried that on CUDA, I got an error (illegal memory access)
and added a memcpy to a local array of 3 uint32_t's.
But on Metal it told me there is no memcpy, so I tried
accessing directly. There is no error, just garbage results.
At some point I did try accessing the scales with an uint16_t
pointer (the scales are for sure 2-byte aligned), but was
still getting garbage. I guess, there must have been another bug.
No access to scales is via a uint16_t pointer and, after starting
from scratch from the C dequantize function, it finally works.
* metal : Q3_K 1st optimization pass
* metal : Q3_K second optimization pass - 29.6 ms/token
* metal : Q3_K cleanup
* metal : fixed accidentally broken Q2_K
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-12 21:39:21 +02:00
|
|
|
}
|
|
|
|
|
2023-07-20 17:19:45 +02:00
|
|
|
for (int row = 0; row < 2; ++row) {
|
|
|
|
const float tot = simd_sum(sumf[row]);
|
|
|
|
if (tiisg == 0) {
|
2023-12-07 21:26:54 +01:00
|
|
|
dst[r1*ne0 + im*ne0*ne1 + first_row + row] = tot;
|
2023-07-20 17:19:45 +02:00
|
|
|
}
|
Metal implementation for all k_quants (#1807)
* metal : improve q4_K
28.3 -> 26.0 ms/token by avoiding a branch in the
calculation of the scales.
* metal : small improvement for Q4_K
* metal : still optimizing Q4_K
This commit pushes it down to 25.3 ms / token.
The crazy idea of using 6 bits for the scales is really costly on
Metal: if I remove the bit fiddling necessary to make the block
scales, time goes almost to the Q4_0 23 ms/token.
Before pushing the k-quants upstream I had a Q4_K variant that
had used 8-bit scales. It wasn't more accurate, used 0.125 bits more per weight,
was running slightly slower on the CPU (due to the larger model size
and being memory bound there), and the difference was entirely
negligible under CUDA. So, I decided to publish the version with 6-bit
scales. Perhaps I should re-consider and change to 8-bit scales?
* metal : some more optimizations
Q2_K: 25.4 ms/token
Q6_K: 27.3 ms/token
Q4_0: 22.8 ms/token
Q4_1: 23.1 ms/token
* metal : Q3_K support
Something is not quite right yet.
* metal : Q5_K support
Initial version achieves 31.2 ms/token, 210 GB/s
* metal : still not able to figure out why q3_K does not work
* Minor
* metal : yet another failed attempt to make q3_K work
* metal : optimize Q5_K
31.2 ms -> 27.8 ms.
250 GB/s.
* metal : q3_K still not working
Adding a heavily commented q3_K metal kernel to explain
my obviously faulty logic. Perhaps someone could spot the issue?
* metal : q3_K finally working
Not optimized at all.
What was the issue? The scales are not 4-bytes aligned,
and I was accessing them with a uint32_t pointer.
When I tried that on CUDA, I got an error (illegal memory access)
and added a memcpy to a local array of 3 uint32_t's.
But on Metal it told me there is no memcpy, so I tried
accessing directly. There is no error, just garbage results.
At some point I did try accessing the scales with an uint16_t
pointer (the scales are for sure 2-byte aligned), but was
still getting garbage. I guess, there must have been another bug.
No access to scales is via a uint16_t pointer and, after starting
from scratch from the C dequantize function, it finally works.
* metal : Q3_K 1st optimization pass
* metal : Q3_K second optimization pass - 29.6 ms/token
* metal : Q3_K cleanup
* metal : fixed accidentally broken Q2_K
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-12 21:39:21 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-12-13 13:04:25 +01:00
|
|
|
[[host_name("kernel_mul_mv_q5_K_f32")]]
|
|
|
|
kernel void kernel_mul_mv_q5_K_f32(
|
2023-06-08 18:46:22 +02:00
|
|
|
device const void * src0,
|
|
|
|
device const float * src1,
|
|
|
|
device float * dst,
|
|
|
|
constant int64_t & ne00,
|
2024-01-02 09:57:44 +01:00
|
|
|
constant int64_t & ne01,
|
|
|
|
constant int64_t & ne02,
|
|
|
|
constant uint64_t & nb00,
|
|
|
|
constant uint64_t & nb01,
|
|
|
|
constant uint64_t & nb02,
|
2024-10-25 21:26:15 +02:00
|
|
|
constant uint64_t & nb03,
|
2024-01-02 09:57:44 +01:00
|
|
|
constant int64_t & ne10,
|
|
|
|
constant int64_t & ne11,
|
|
|
|
constant int64_t & ne12,
|
|
|
|
constant uint64_t & nb10,
|
|
|
|
constant uint64_t & nb11,
|
|
|
|
constant uint64_t & nb12,
|
2024-10-25 21:26:15 +02:00
|
|
|
constant uint64_t & nb13,
|
2024-01-02 09:57:44 +01:00
|
|
|
constant int64_t & ne0,
|
|
|
|
constant int64_t & ne1,
|
|
|
|
constant uint & r2,
|
|
|
|
constant uint & r3,
|
2023-08-16 22:07:04 +02:00
|
|
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
2023-12-13 13:04:25 +01:00
|
|
|
uint tiisg[[thread_index_in_simdgroup]],
|
|
|
|
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
kernel_mul_mv_q5_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, nb01, nb02, nb03, ne10, ne12, nb11, nb12, nb13, ne0, ne1, r2, r3, nullptr, tgpig, tiisg, sgitg);
|
2023-12-13 13:04:25 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
void kernel_mul_mv_q6_K_f32_impl(
|
|
|
|
device const void * src0,
|
|
|
|
device const float * src1,
|
|
|
|
device float * dst,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne00,
|
|
|
|
int64_t ne01,
|
|
|
|
int64_t ne02,
|
2024-10-25 21:26:15 +02:00
|
|
|
uint64_t nb01,
|
|
|
|
uint64_t nb02,
|
|
|
|
uint64_t nb03,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne10,
|
|
|
|
int64_t ne12,
|
2024-10-25 21:26:15 +02:00
|
|
|
uint64_t nb11,
|
|
|
|
uint64_t nb12,
|
|
|
|
uint64_t nb13,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne0,
|
|
|
|
int64_t ne1,
|
|
|
|
uint r2,
|
|
|
|
uint r3,
|
|
|
|
threadgroup int8_t * shared_values,
|
|
|
|
uint3 tgpig,
|
|
|
|
uint tiisg,
|
|
|
|
uint sgitg) {
|
2023-06-08 18:46:22 +02:00
|
|
|
|
|
|
|
const uint8_t kmask1 = 0x03;
|
|
|
|
const uint8_t kmask2 = 0x0C;
|
|
|
|
const uint8_t kmask3 = 0x30;
|
|
|
|
const uint8_t kmask4 = 0xC0;
|
|
|
|
|
|
|
|
const int nb = ne00/QK_K;
|
|
|
|
|
|
|
|
const int64_t r0 = tgpig.x;
|
|
|
|
const int64_t r1 = tgpig.y;
|
2023-12-07 21:26:54 +01:00
|
|
|
const int im = tgpig.z;
|
2023-06-08 18:46:22 +02:00
|
|
|
|
2023-07-20 17:19:45 +02:00
|
|
|
const int row = 2 * r0 + sgitg;
|
2023-12-07 21:26:54 +01:00
|
|
|
|
|
|
|
const uint i12 = im%ne12;
|
|
|
|
const uint i13 = im/ne12;
|
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
const uint offset0 = row*nb01 + (i12/r2)*nb02 + (i13/r3)*nb03;
|
|
|
|
const uint offset1 = r1*nb11 + (i12 )*nb12 + (i13 )*nb13;
|
2023-12-07 21:26:54 +01:00
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
device const block_q6_K * x = (device const block_q6_K *) ((device char *) src0 + offset0);
|
|
|
|
device const float * yy = (device const float *) ((device char *) src1 + offset1);
|
2023-06-08 18:46:22 +02:00
|
|
|
|
k-quants : support for super-block size of 64 (#2001)
* k_quants: WIP super-blocks with 64 weights
* k_quants: WIP super-blocks with 64 weights
Q6_K scalar and AVX2 works
* k_quants: WIP super-blocks with 64 weights
Q4_K scalar and AVX2 works
* k_quants: WIP super-blocks with 64 weights
Q2_K scalar and AVX2 works. Q2_K is way too slow (it is actually slower
than the scalar implementation)
* k_quants: WIP super-blocks with 64 weights
Q3_K scalar and AVX2 works.
* k_quants: WIP super-blocks with 64 weights
Q5_K scalar and AVX2 works, and with that all
k_quants are done on AVX2 and scalar
* k_quants: WIP super-blocks with 64 weights
Q6_K working on CUDA. Cannot make it run quite as gast as
with super-blocks with 256 weigths: 8% slower on 4080,
20% slower on the 1660 (but there we fit 1 less layer on the
GPU because pf the larger model size), so some fraction of
these 20% is due to that,
* k_quants: WIP super-blocks with 64 weights
Q4_K working on CUDA. ~10% slower on GTX-1660,
16% slower on 4080.
* k_quants: WIP super-blocks with 64 weights
Q2_K working on CUDA. ~3% slower on GTX-1660,
10% slower on 4080.
* k_quants: WIP super-blocks with 64 weights
Q3_K working on CUDA.
* k_quants: WIP super-blocks with 64 weights
Q5_K working on CUDA, and with this CUDA is done.
* k_quants: WIP super-blocks with 64 weights
Q6_K working on ARM_NEON
* k_quants: WIP super-blocks with 64 weights
Q4_K working on ARM_NEON, but quite a bit slower than 256 weights
* k_quants: WIP super-blocks with 64 weights
Q2_K working on ARM_NEON, but quite a bit slower than 256 weights
* k_quants: WIP super-blocks with 64 weights
Q3_K working on ARM_NEON, but quite a bit slower than 256 weights.
* k_quants: WIP super-blocks with 64 weights
Q5_K working on ARM_NEON, but quite a bit slower than 256 weights.
With that, we have full support for ARM_NEON, although
performance is not quite there.
* k_quants: WIP super-blocks with 64 weights
Slightly more efficient Q3_K and Q5_K
* k_quants: WIP super-blocks with 64 weights
Another small improvement for Q3_K and Q5_K on ARM_NEON
* k_quants: WIP super-blocks with 64 weights
Yet another speedup for Q5_K on ARM_NEON.
We are now within 10% of the QK_K = 256 version.
* k_quants: WIP super-blocks with 64 weights
* We are able to pass preprocessor macros to the Metal
compiler
* Q6_K works and is actually slightly more efficient than
the QK_K = 256 version (25.2 ms vs 25.8 ms)
* k_quants: WIP super-blocks with 64 weights
Q4_K works on Metal and is actually slightly faster
than QK_K = 256 (21.95 ms vs 24.0 ms).
* k_quants: WIP super-blocks with 64 weights
Q2_K works on Metal and is very slightly faster
than QK_K = 256 (23.8 ms vs 24.2 ms).
* k_quants: WIP super-blocks with 64 weights
Q3_K works on Metal and is slightly faster
than QK_K = 256 (26.6 ms vs 28.3 ms).
* k_quants: WIP super-blocks with 64 weights
Q5_K works on Metal and is slightly faster
than QK_K = 256 (23.7 ms vs 26.3 ms).
* k_quants: call them _K, not _k, also on Metal
* k_quants: correctly define QK_K in llama.cpp
* Fixed bug in q4_K quantization added with the 64-block addition
* Simplify via lambda
* k_quants: swicth Q3_K to 4-bit scales when QK_K = 64
Otherwise there isn't much benefit from this
quantization type. There is some very slight loss
in accuracy, but we reduce size by ~7%.
E.g., for OpenLLaMA-3B, Q3_K_S perplexity is
8.6131 with 8-bit scales and 8.6352 with 4-bit,
while file size decreases from 1.53G to 1.44G.
* k_quants: switch Q4_K to 4-bit scales when QK_K = 64
Here the loss in accuracy is greater than for Q3_K,
but the Q4_K points still move further to the left on
the perplexity vs size curve.
* k_quants: forgot to add the Metal changes in last commit
* k_quants: change Q5_K to be type 0 when QK_K = 64
Still needs AVX2 implementation
* k_quants: AVX2 implementation for new 64-weight Q5_K
* k_quants: 10% faster ARM_NEON Q5_K dot product
* k_quants: fixed issue caused by merging with master
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-26 18:43:07 +02:00
|
|
|
float sumf = 0;
|
|
|
|
|
2023-07-20 17:19:45 +02:00
|
|
|
const int tid = tiisg/2;
|
|
|
|
const int ix = tiisg%2;
|
|
|
|
const int ip = tid/8; // 0 or 1
|
|
|
|
const int il = tid%8;
|
2023-06-08 18:46:22 +02:00
|
|
|
const int n = 4;
|
Metal implementation for all k_quants (#1807)
* metal : improve q4_K
28.3 -> 26.0 ms/token by avoiding a branch in the
calculation of the scales.
* metal : small improvement for Q4_K
* metal : still optimizing Q4_K
This commit pushes it down to 25.3 ms / token.
The crazy idea of using 6 bits for the scales is really costly on
Metal: if I remove the bit fiddling necessary to make the block
scales, time goes almost to the Q4_0 23 ms/token.
Before pushing the k-quants upstream I had a Q4_K variant that
had used 8-bit scales. It wasn't more accurate, used 0.125 bits more per weight,
was running slightly slower on the CPU (due to the larger model size
and being memory bound there), and the difference was entirely
negligible under CUDA. So, I decided to publish the version with 6-bit
scales. Perhaps I should re-consider and change to 8-bit scales?
* metal : some more optimizations
Q2_K: 25.4 ms/token
Q6_K: 27.3 ms/token
Q4_0: 22.8 ms/token
Q4_1: 23.1 ms/token
* metal : Q3_K support
Something is not quite right yet.
* metal : Q5_K support
Initial version achieves 31.2 ms/token, 210 GB/s
* metal : still not able to figure out why q3_K does not work
* Minor
* metal : yet another failed attempt to make q3_K work
* metal : optimize Q5_K
31.2 ms -> 27.8 ms.
250 GB/s.
* metal : q3_K still not working
Adding a heavily commented q3_K metal kernel to explain
my obviously faulty logic. Perhaps someone could spot the issue?
* metal : q3_K finally working
Not optimized at all.
What was the issue? The scales are not 4-bytes aligned,
and I was accessing them with a uint32_t pointer.
When I tried that on CUDA, I got an error (illegal memory access)
and added a memcpy to a local array of 3 uint32_t's.
But on Metal it told me there is no memcpy, so I tried
accessing directly. There is no error, just garbage results.
At some point I did try accessing the scales with an uint16_t
pointer (the scales are for sure 2-byte aligned), but was
still getting garbage. I guess, there must have been another bug.
No access to scales is via a uint16_t pointer and, after starting
from scratch from the C dequantize function, it finally works.
* metal : Q3_K 1st optimization pass
* metal : Q3_K second optimization pass - 29.6 ms/token
* metal : Q3_K cleanup
* metal : fixed accidentally broken Q2_K
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-12 21:39:21 +02:00
|
|
|
const int l0 = n*il;
|
|
|
|
const int is = 8*ip + l0/16;
|
|
|
|
|
|
|
|
const int y_offset = 128*ip + l0;
|
|
|
|
const int q_offset_l = 64*ip + l0;
|
|
|
|
const int q_offset_h = 32*ip + l0;
|
2023-06-08 18:46:22 +02:00
|
|
|
|
2023-07-20 17:19:45 +02:00
|
|
|
for (int i = ix; i < nb; i += 2) {
|
2023-06-08 18:46:22 +02:00
|
|
|
|
2023-07-20 17:19:45 +02:00
|
|
|
device const uint8_t * q1 = x[i].ql + q_offset_l;
|
|
|
|
device const uint8_t * q2 = q1 + 32;
|
Metal implementation for all k_quants (#1807)
* metal : improve q4_K
28.3 -> 26.0 ms/token by avoiding a branch in the
calculation of the scales.
* metal : small improvement for Q4_K
* metal : still optimizing Q4_K
This commit pushes it down to 25.3 ms / token.
The crazy idea of using 6 bits for the scales is really costly on
Metal: if I remove the bit fiddling necessary to make the block
scales, time goes almost to the Q4_0 23 ms/token.
Before pushing the k-quants upstream I had a Q4_K variant that
had used 8-bit scales. It wasn't more accurate, used 0.125 bits more per weight,
was running slightly slower on the CPU (due to the larger model size
and being memory bound there), and the difference was entirely
negligible under CUDA. So, I decided to publish the version with 6-bit
scales. Perhaps I should re-consider and change to 8-bit scales?
* metal : some more optimizations
Q2_K: 25.4 ms/token
Q6_K: 27.3 ms/token
Q4_0: 22.8 ms/token
Q4_1: 23.1 ms/token
* metal : Q3_K support
Something is not quite right yet.
* metal : Q5_K support
Initial version achieves 31.2 ms/token, 210 GB/s
* metal : still not able to figure out why q3_K does not work
* Minor
* metal : yet another failed attempt to make q3_K work
* metal : optimize Q5_K
31.2 ms -> 27.8 ms.
250 GB/s.
* metal : q3_K still not working
Adding a heavily commented q3_K metal kernel to explain
my obviously faulty logic. Perhaps someone could spot the issue?
* metal : q3_K finally working
Not optimized at all.
What was the issue? The scales are not 4-bytes aligned,
and I was accessing them with a uint32_t pointer.
When I tried that on CUDA, I got an error (illegal memory access)
and added a memcpy to a local array of 3 uint32_t's.
But on Metal it told me there is no memcpy, so I tried
accessing directly. There is no error, just garbage results.
At some point I did try accessing the scales with an uint16_t
pointer (the scales are for sure 2-byte aligned), but was
still getting garbage. I guess, there must have been another bug.
No access to scales is via a uint16_t pointer and, after starting
from scratch from the C dequantize function, it finally works.
* metal : Q3_K 1st optimization pass
* metal : Q3_K second optimization pass - 29.6 ms/token
* metal : Q3_K cleanup
* metal : fixed accidentally broken Q2_K
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-12 21:39:21 +02:00
|
|
|
device const uint8_t * qh = x[i].qh + q_offset_h;
|
2023-06-08 18:46:22 +02:00
|
|
|
device const int8_t * sc = x[i].scales + is;
|
|
|
|
|
Metal implementation for all k_quants (#1807)
* metal : improve q4_K
28.3 -> 26.0 ms/token by avoiding a branch in the
calculation of the scales.
* metal : small improvement for Q4_K
* metal : still optimizing Q4_K
This commit pushes it down to 25.3 ms / token.
The crazy idea of using 6 bits for the scales is really costly on
Metal: if I remove the bit fiddling necessary to make the block
scales, time goes almost to the Q4_0 23 ms/token.
Before pushing the k-quants upstream I had a Q4_K variant that
had used 8-bit scales. It wasn't more accurate, used 0.125 bits more per weight,
was running slightly slower on the CPU (due to the larger model size
and being memory bound there), and the difference was entirely
negligible under CUDA. So, I decided to publish the version with 6-bit
scales. Perhaps I should re-consider and change to 8-bit scales?
* metal : some more optimizations
Q2_K: 25.4 ms/token
Q6_K: 27.3 ms/token
Q4_0: 22.8 ms/token
Q4_1: 23.1 ms/token
* metal : Q3_K support
Something is not quite right yet.
* metal : Q5_K support
Initial version achieves 31.2 ms/token, 210 GB/s
* metal : still not able to figure out why q3_K does not work
* Minor
* metal : yet another failed attempt to make q3_K work
* metal : optimize Q5_K
31.2 ms -> 27.8 ms.
250 GB/s.
* metal : q3_K still not working
Adding a heavily commented q3_K metal kernel to explain
my obviously faulty logic. Perhaps someone could spot the issue?
* metal : q3_K finally working
Not optimized at all.
What was the issue? The scales are not 4-bytes aligned,
and I was accessing them with a uint32_t pointer.
When I tried that on CUDA, I got an error (illegal memory access)
and added a memcpy to a local array of 3 uint32_t's.
But on Metal it told me there is no memcpy, so I tried
accessing directly. There is no error, just garbage results.
At some point I did try accessing the scales with an uint16_t
pointer (the scales are for sure 2-byte aligned), but was
still getting garbage. I guess, there must have been another bug.
No access to scales is via a uint16_t pointer and, after starting
from scratch from the C dequantize function, it finally works.
* metal : Q3_K 1st optimization pass
* metal : Q3_K second optimization pass - 29.6 ms/token
* metal : Q3_K cleanup
* metal : fixed accidentally broken Q2_K
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-12 21:39:21 +02:00
|
|
|
device const float * y = yy + i * QK_K + y_offset;
|
2023-06-08 18:46:22 +02:00
|
|
|
|
|
|
|
const float dall = x[i].d;
|
|
|
|
|
|
|
|
float4 sums = {0.f, 0.f, 0.f, 0.f};
|
|
|
|
for (int l = 0; l < n; ++l) {
|
2023-07-20 17:19:45 +02:00
|
|
|
sums[0] += y[l+ 0] * ((int8_t)((q1[l] & 0xF) | ((qh[l] & kmask1) << 4)) - 32);
|
|
|
|
sums[1] += y[l+32] * ((int8_t)((q2[l] & 0xF) | ((qh[l] & kmask2) << 2)) - 32);
|
|
|
|
sums[2] += y[l+64] * ((int8_t)((q1[l] >> 4) | ((qh[l] & kmask3) << 0)) - 32);
|
|
|
|
sums[3] += y[l+96] * ((int8_t)((q2[l] >> 4) | ((qh[l] & kmask4) >> 2)) - 32);
|
2023-06-08 18:46:22 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
sumf += dall * (sums[0] * sc[0] + sums[1] * sc[2] + sums[2] * sc[4] + sums[3] * sc[6]);
|
|
|
|
|
|
|
|
}
|
2023-07-20 17:19:45 +02:00
|
|
|
|
|
|
|
const float tot = simd_sum(sumf);
|
|
|
|
if (tiisg == 0) {
|
2023-12-07 21:26:54 +01:00
|
|
|
dst[r1*ne0 + im*ne0*ne1 + row] = tot;
|
2023-08-16 22:07:04 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-12-13 13:04:25 +01:00
|
|
|
[[host_name("kernel_mul_mv_q6_K_f32")]]
|
|
|
|
kernel void kernel_mul_mv_q6_K_f32(
|
|
|
|
device const void * src0,
|
|
|
|
device const float * src1,
|
|
|
|
device float * dst,
|
|
|
|
constant int64_t & ne00,
|
2024-01-02 09:57:44 +01:00
|
|
|
constant int64_t & ne01,
|
|
|
|
constant int64_t & ne02,
|
|
|
|
constant uint64_t & nb00,
|
|
|
|
constant uint64_t & nb01,
|
|
|
|
constant uint64_t & nb02,
|
2024-10-25 21:26:15 +02:00
|
|
|
constant uint64_t & nb03,
|
2024-01-02 09:57:44 +01:00
|
|
|
constant int64_t & ne10,
|
|
|
|
constant int64_t & ne11,
|
|
|
|
constant int64_t & ne12,
|
|
|
|
constant uint64_t & nb10,
|
|
|
|
constant uint64_t & nb11,
|
|
|
|
constant uint64_t & nb12,
|
2024-10-25 21:26:15 +02:00
|
|
|
constant uint64_t & nb13,
|
2024-01-02 09:57:44 +01:00
|
|
|
constant int64_t & ne0,
|
|
|
|
constant int64_t & ne1,
|
|
|
|
constant uint & r2,
|
|
|
|
constant uint & r3,
|
2023-12-13 13:04:25 +01:00
|
|
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
|
|
|
uint tiisg[[thread_index_in_simdgroup]],
|
|
|
|
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
kernel_mul_mv_q6_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, nb01, nb02, nb03, ne10, ne12, nb11, nb12, nb13, ne0, ne1, r2, r3, nullptr, tgpig, tiisg, sgitg);
|
2023-12-13 13:04:25 +01:00
|
|
|
}
|
|
|
|
|
2024-01-08 16:02:32 +01:00
|
|
|
// ======================= "True" 2-bit
|
|
|
|
|
|
|
|
void kernel_mul_mv_iq2_xxs_f32_impl(
|
|
|
|
device const void * src0,
|
|
|
|
device const float * src1,
|
|
|
|
device float * dst,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne00,
|
|
|
|
int64_t ne01,
|
|
|
|
int64_t ne02,
|
2024-10-25 21:26:15 +02:00
|
|
|
uint64_t nb01,
|
|
|
|
uint64_t nb02,
|
|
|
|
uint64_t nb03,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne10,
|
|
|
|
int64_t ne12,
|
2024-10-25 21:26:15 +02:00
|
|
|
uint64_t nb11,
|
|
|
|
uint64_t nb12,
|
|
|
|
uint64_t nb13,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne0,
|
|
|
|
int64_t ne1,
|
|
|
|
uint r2,
|
|
|
|
uint r3,
|
|
|
|
threadgroup int8_t * shared_values,
|
|
|
|
uint3 tgpig,
|
|
|
|
uint tiisg,
|
|
|
|
uint sgitg) {
|
2024-01-08 16:02:32 +01:00
|
|
|
|
|
|
|
const int nb = ne00/QK_K;
|
|
|
|
const int r0 = tgpig.x;
|
|
|
|
const int r1 = tgpig.y;
|
|
|
|
const int im = tgpig.z;
|
|
|
|
|
|
|
|
const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
|
|
|
|
|
|
|
|
const uint i12 = im%ne12;
|
|
|
|
const uint i13 = im/ne12;
|
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
const uint offset0 = first_row*nb01 + (i12/r2)*nb02 + (i13/r3)*nb03;
|
|
|
|
const uint offset1 = r1*nb11 + (i12 )*nb12 + (i13 )*nb13;
|
2024-01-08 16:02:32 +01:00
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
device const block_iq2_xxs * x = (device const block_iq2_xxs *) ((device char *) src0 + offset0);
|
|
|
|
device const float * y = (device const float *) ((device char *) src1 + offset1);
|
2024-01-08 16:02:32 +01:00
|
|
|
|
|
|
|
float yl[32];
|
|
|
|
float sumf[N_DST]={0.f}, all_sum;
|
|
|
|
|
|
|
|
const int nb32 = nb * (QK_K / 32);
|
|
|
|
|
|
|
|
threadgroup uint64_t * values = (threadgroup uint64_t *)shared_values;
|
|
|
|
threadgroup uint8_t * shared_signs = (threadgroup uint8_t *)(values + 256);
|
|
|
|
{
|
|
|
|
int nval = 4;
|
|
|
|
int pos = (32*sgitg + tiisg)*nval;
|
2024-01-11 20:39:39 +01:00
|
|
|
for (int i = 0; i < nval; ++i) values[pos + i] = iq2xxs_grid[pos + i];
|
2024-01-08 16:02:32 +01:00
|
|
|
nval = 2;
|
|
|
|
pos = (32*sgitg + tiisg)*nval;
|
|
|
|
for (int i = 0; i < nval; ++i) shared_signs[pos+i] = ksigns_iq2xs[pos+i];
|
|
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
|
|
}
|
|
|
|
|
|
|
|
const int ix = tiisg;
|
|
|
|
|
|
|
|
device const float * y4 = y + 32 * ix;
|
|
|
|
|
|
|
|
for (int ib32 = ix; ib32 < nb32; ib32 += 32) {
|
|
|
|
|
|
|
|
for (int i = 0; i < 32; ++i) {
|
|
|
|
yl[i] = y4[i];
|
|
|
|
}
|
|
|
|
|
|
|
|
const int ibl = ib32 / (QK_K / 32);
|
|
|
|
const int ib = ib32 % (QK_K / 32);
|
|
|
|
|
|
|
|
device const block_iq2_xxs * xr = x + ibl;
|
|
|
|
device const uint16_t * q2 = xr->qs + 4 * ib;
|
|
|
|
device const half * dh = &xr->d;
|
|
|
|
|
|
|
|
for (int row = 0; row < N_DST; row++) {
|
|
|
|
|
|
|
|
const float db = dh[0];
|
|
|
|
device const uint8_t * aux8 = (device const uint8_t *)q2;
|
|
|
|
const uint32_t aux32 = q2[2] | (q2[3] << 16);
|
|
|
|
const float d = db * (0.5f + (aux32 >> 28));
|
|
|
|
|
|
|
|
float sum = 0;
|
|
|
|
for (int l = 0; l < 4; ++l) {
|
|
|
|
const threadgroup uint8_t * grid = (const threadgroup uint8_t *)(values + aux8[l]);
|
|
|
|
const uint8_t signs = shared_signs[(aux32 >> 7*l) & 127];
|
|
|
|
for (int j = 0; j < 8; ++j) {
|
|
|
|
sum += yl[8*l + j] * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
sumf[row] += d * sum;
|
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
dh += nb01/2;
|
|
|
|
q2 += nb01/2;
|
2024-01-08 16:02:32 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
y4 += 32 * 32;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (int row = 0; row < N_DST; ++row) {
|
|
|
|
all_sum = simd_sum(sumf[row]);
|
|
|
|
if (tiisg == 0) {
|
|
|
|
dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum * 0.25f;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
[[host_name("kernel_mul_mv_iq2_xxs_f32")]]
|
|
|
|
kernel void kernel_mul_mv_iq2_xxs_f32(
|
|
|
|
device const void * src0,
|
|
|
|
device const float * src1,
|
|
|
|
device float * dst,
|
|
|
|
constant int64_t & ne00,
|
|
|
|
constant int64_t & ne01,
|
|
|
|
constant int64_t & ne02,
|
|
|
|
constant uint64_t & nb00,
|
|
|
|
constant uint64_t & nb01,
|
|
|
|
constant uint64_t & nb02,
|
2024-10-25 21:26:15 +02:00
|
|
|
constant uint64_t & nb03,
|
2024-01-08 16:02:32 +01:00
|
|
|
constant int64_t & ne10,
|
|
|
|
constant int64_t & ne11,
|
|
|
|
constant int64_t & ne12,
|
|
|
|
constant uint64_t & nb10,
|
|
|
|
constant uint64_t & nb11,
|
|
|
|
constant uint64_t & nb12,
|
2024-10-25 21:26:15 +02:00
|
|
|
constant uint64_t & nb13,
|
2024-01-08 16:02:32 +01:00
|
|
|
constant int64_t & ne0,
|
|
|
|
constant int64_t & ne1,
|
|
|
|
constant uint & r2,
|
|
|
|
constant uint & r3,
|
|
|
|
threadgroup int8_t * shared_values [[threadgroup(0)]],
|
|
|
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
|
|
|
uint tiisg[[thread_index_in_simdgroup]],
|
|
|
|
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
kernel_mul_mv_iq2_xxs_f32_impl(src0, src1, dst, ne00, ne01, ne02, nb01, nb02, nb03, ne10, ne12, nb11, nb12, nb13, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg);
|
2024-01-08 16:02:32 +01:00
|
|
|
}
|
|
|
|
|
2024-01-11 20:39:39 +01:00
|
|
|
void kernel_mul_mv_iq2_xs_f32_impl(
|
|
|
|
device const void * src0,
|
|
|
|
device const float * src1,
|
|
|
|
device float * dst,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne00,
|
|
|
|
int64_t ne01,
|
|
|
|
int64_t ne02,
|
2024-10-25 21:26:15 +02:00
|
|
|
uint64_t nb01,
|
|
|
|
uint64_t nb02,
|
|
|
|
uint64_t nb03,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne10,
|
|
|
|
int64_t ne12,
|
2024-10-25 21:26:15 +02:00
|
|
|
uint64_t nb11,
|
|
|
|
uint64_t nb12,
|
|
|
|
uint64_t nb13,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne0,
|
|
|
|
int64_t ne1,
|
|
|
|
uint r2,
|
|
|
|
uint r3,
|
|
|
|
threadgroup int8_t * shared_values,
|
|
|
|
uint3 tgpig,
|
|
|
|
uint tiisg,
|
|
|
|
uint sgitg) {
|
2024-01-11 20:39:39 +01:00
|
|
|
|
|
|
|
const int nb = ne00/QK_K;
|
|
|
|
const int r0 = tgpig.x;
|
|
|
|
const int r1 = tgpig.y;
|
|
|
|
const int im = tgpig.z;
|
|
|
|
|
|
|
|
const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
|
|
|
|
|
|
|
|
const uint i12 = im%ne12;
|
|
|
|
const uint i13 = im/ne12;
|
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
const uint offset0 = first_row*nb01 + (i12/r2)*nb02 + (i13/r3)*nb03;
|
|
|
|
const uint offset1 = r1*nb11 + (i12 )*nb12 + (i13 )*nb13;
|
2024-01-11 20:39:39 +01:00
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
device const block_iq2_xs * x = (device const block_iq2_xs *) ((device char *) src0 + offset0);
|
|
|
|
device const float * y = (device const float *) ((device char *) src1 + offset1);
|
2024-01-11 20:39:39 +01:00
|
|
|
|
|
|
|
float yl[32];
|
|
|
|
float sumf[N_DST]={0.f}, all_sum;
|
|
|
|
|
|
|
|
const int nb32 = nb * (QK_K / 32);
|
|
|
|
|
|
|
|
threadgroup uint64_t * values = (threadgroup uint64_t *)shared_values;
|
|
|
|
threadgroup uint8_t * shared_signs = (threadgroup uint8_t *)(values + 512);
|
|
|
|
{
|
|
|
|
int nval = 8;
|
|
|
|
int pos = (32*sgitg + tiisg)*nval;
|
|
|
|
for (int i = 0; i < nval; ++i) values[pos + i] = iq2xs_grid[pos + i];
|
|
|
|
nval = 2;
|
|
|
|
pos = (32*sgitg + tiisg)*nval;
|
|
|
|
for (int i = 0; i < nval; ++i) shared_signs[pos+i] = ksigns_iq2xs[pos+i];
|
|
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
|
|
}
|
|
|
|
|
|
|
|
const int ix = tiisg;
|
|
|
|
|
|
|
|
device const float * y4 = y + 32 * ix;
|
|
|
|
|
|
|
|
for (int ib32 = ix; ib32 < nb32; ib32 += 32) {
|
|
|
|
|
|
|
|
for (int i = 0; i < 32; ++i) {
|
|
|
|
yl[i] = y4[i];
|
|
|
|
}
|
|
|
|
|
|
|
|
const int ibl = ib32 / (QK_K / 32);
|
|
|
|
const int ib = ib32 % (QK_K / 32);
|
|
|
|
|
|
|
|
device const block_iq2_xs * xr = x + ibl;
|
|
|
|
device const uint16_t * q2 = xr->qs + 4 * ib;
|
|
|
|
device const uint8_t * sc = xr->scales + ib;
|
|
|
|
device const half * dh = &xr->d;
|
|
|
|
|
|
|
|
for (int row = 0; row < N_DST; row++) {
|
|
|
|
|
|
|
|
const float db = dh[0];
|
|
|
|
const uint8_t ls1 = sc[0] & 0xf;
|
|
|
|
const uint8_t ls2 = sc[0] >> 4;
|
|
|
|
const float d1 = db * (0.5f + ls1);
|
|
|
|
const float d2 = db * (0.5f + ls2);
|
|
|
|
|
|
|
|
float sum1 = 0, sum2 = 0;
|
|
|
|
for (int l = 0; l < 2; ++l) {
|
|
|
|
const threadgroup uint8_t * grid = (const threadgroup uint8_t *)(values + (q2[l] & 511));
|
|
|
|
const uint8_t signs = shared_signs[(q2[l] >> 9)];
|
|
|
|
for (int j = 0; j < 8; ++j) {
|
|
|
|
sum1 += yl[8*l + j] * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for (int l = 2; l < 4; ++l) {
|
|
|
|
const threadgroup uint8_t * grid = (const threadgroup uint8_t *)(values + (q2[l] & 511));
|
|
|
|
const uint8_t signs = shared_signs[(q2[l] >> 9)];
|
|
|
|
for (int j = 0; j < 8; ++j) {
|
|
|
|
sum2 += yl[8*l + j] * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
sumf[row] += d1 * sum1 + d2 * sum2;
|
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
dh += nb01/2;
|
|
|
|
q2 += nb01/2;
|
|
|
|
sc += nb01;
|
2024-01-11 20:39:39 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
y4 += 32 * 32;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (int row = 0; row < N_DST; ++row) {
|
|
|
|
all_sum = simd_sum(sumf[row]);
|
|
|
|
if (tiisg == 0) {
|
|
|
|
dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum * 0.25f;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
[[host_name("kernel_mul_mv_iq2_xs_f32")]]
|
|
|
|
kernel void kernel_mul_mv_iq2_xs_f32(
|
|
|
|
device const void * src0,
|
|
|
|
device const float * src1,
|
|
|
|
device float * dst,
|
|
|
|
constant int64_t & ne00,
|
|
|
|
constant int64_t & ne01,
|
|
|
|
constant int64_t & ne02,
|
|
|
|
constant uint64_t & nb00,
|
|
|
|
constant uint64_t & nb01,
|
|
|
|
constant uint64_t & nb02,
|
2024-10-25 21:26:15 +02:00
|
|
|
constant uint64_t & nb03,
|
2024-01-11 20:39:39 +01:00
|
|
|
constant int64_t & ne10,
|
|
|
|
constant int64_t & ne11,
|
|
|
|
constant int64_t & ne12,
|
|
|
|
constant uint64_t & nb10,
|
|
|
|
constant uint64_t & nb11,
|
|
|
|
constant uint64_t & nb12,
|
2024-10-25 21:26:15 +02:00
|
|
|
constant uint64_t & nb13,
|
2024-01-11 20:39:39 +01:00
|
|
|
constant int64_t & ne0,
|
|
|
|
constant int64_t & ne1,
|
|
|
|
constant uint & r2,
|
|
|
|
constant uint & r3,
|
|
|
|
threadgroup int8_t * shared_values [[threadgroup(0)]],
|
|
|
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
|
|
|
uint tiisg[[thread_index_in_simdgroup]],
|
|
|
|
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
kernel_mul_mv_iq2_xs_f32_impl(src0, src1, dst, ne00, ne01, ne02, nb01, nb02, nb03, ne10, ne12, nb11, nb12, nb13, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg);
|
2024-01-11 20:39:39 +01:00
|
|
|
}
|
|
|
|
|
2024-01-30 14:14:12 +01:00
|
|
|
void kernel_mul_mv_iq3_xxs_f32_impl(
|
|
|
|
device const void * src0,
|
|
|
|
device const float * src1,
|
|
|
|
device float * dst,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne00,
|
|
|
|
int64_t ne01,
|
|
|
|
int64_t ne02,
|
2024-10-25 21:26:15 +02:00
|
|
|
uint64_t nb01,
|
|
|
|
uint64_t nb02,
|
|
|
|
uint64_t nb03,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne10,
|
|
|
|
int64_t ne12,
|
2024-10-25 21:26:15 +02:00
|
|
|
uint64_t nb11,
|
|
|
|
uint64_t nb12,
|
|
|
|
uint64_t nb13,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne0,
|
|
|
|
int64_t ne1,
|
|
|
|
uint r2,
|
|
|
|
uint r3,
|
|
|
|
threadgroup int8_t * shared_values,
|
|
|
|
uint3 tgpig,
|
|
|
|
uint tiisg,
|
|
|
|
uint sgitg) {
|
2024-01-30 14:14:12 +01:00
|
|
|
|
|
|
|
const int nb = ne00/QK_K;
|
|
|
|
const int r0 = tgpig.x;
|
|
|
|
const int r1 = tgpig.y;
|
|
|
|
const int im = tgpig.z;
|
|
|
|
|
|
|
|
const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
|
|
|
|
|
|
|
|
const uint i12 = im%ne12;
|
|
|
|
const uint i13 = im/ne12;
|
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
const uint offset0 = first_row*nb01 + (i12/r2)*nb02 + (i13/r3)*nb03;
|
|
|
|
const uint offset1 = r1*nb11 + (i12 )*nb12 + (i13 )*nb13;
|
2024-01-30 14:14:12 +01:00
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
device const block_iq3_xxs * x = (device const block_iq3_xxs *) ((device char *) src0 + offset0);
|
|
|
|
device const float * y = (device const float *) ((device char *) src1 + offset1);
|
2024-01-30 14:14:12 +01:00
|
|
|
|
|
|
|
float yl[32];
|
|
|
|
float sumf[N_DST]={0.f}, all_sum;
|
|
|
|
|
|
|
|
const int nb32 = nb * (QK_K / 32);
|
|
|
|
|
|
|
|
threadgroup uint32_t * values = (threadgroup uint32_t *)shared_values;
|
|
|
|
threadgroup uint8_t * shared_signs = (threadgroup uint8_t *)(values + 256);
|
|
|
|
{
|
|
|
|
int nval = 4;
|
|
|
|
int pos = (32*sgitg + tiisg)*nval;
|
|
|
|
for (int i = 0; i < nval; ++i) values[pos + i] = iq3xxs_grid[pos + i];
|
|
|
|
nval = 2;
|
|
|
|
pos = (32*sgitg + tiisg)*nval;
|
|
|
|
for (int i = 0; i < nval; ++i) shared_signs[pos+i] = ksigns_iq2xs[pos+i];
|
|
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
|
|
}
|
|
|
|
|
|
|
|
const int ix = tiisg;
|
|
|
|
|
|
|
|
device const float * y4 = y + 32 * ix;
|
|
|
|
|
|
|
|
for (int ib32 = ix; ib32 < nb32; ib32 += 32) {
|
|
|
|
|
|
|
|
for (int i = 0; i < 32; ++i) {
|
|
|
|
yl[i] = y4[i];
|
|
|
|
}
|
|
|
|
|
|
|
|
const int ibl = ib32 / (QK_K / 32);
|
|
|
|
const int ib = ib32 % (QK_K / 32);
|
|
|
|
|
|
|
|
device const block_iq3_xxs * xr = x + ibl;
|
|
|
|
device const uint8_t * q3 = xr->qs + 8 * ib;
|
|
|
|
device const uint16_t * gas = (device const uint16_t *)(xr->qs + QK_K/4) + 2 * ib;
|
|
|
|
device const half * dh = &xr->d;
|
|
|
|
|
|
|
|
for (int row = 0; row < N_DST; row++) {
|
|
|
|
|
|
|
|
const float db = dh[0];
|
|
|
|
const uint32_t aux32 = gas[0] | (gas[1] << 16);
|
|
|
|
const float d = db * (0.5f + (aux32 >> 28));
|
|
|
|
|
|
|
|
float2 sum = {0};
|
|
|
|
for (int l = 0; l < 4; ++l) {
|
|
|
|
const threadgroup uint8_t * grid1 = (const threadgroup uint8_t *)(values + q3[2*l+0]);
|
|
|
|
const threadgroup uint8_t * grid2 = (const threadgroup uint8_t *)(values + q3[2*l+1]);
|
|
|
|
const uint8_t signs = shared_signs[(aux32 >> 7*l) & 127];
|
|
|
|
for (int j = 0; j < 4; ++j) {
|
|
|
|
sum[0] += yl[8*l + j + 0] * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
|
|
|
|
sum[1] += yl[8*l + j + 4] * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
sumf[row] += d * (sum[0] + sum[1]);
|
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
dh += nb01/2;
|
|
|
|
q3 += nb01;
|
|
|
|
gas += nb01/2;
|
2024-01-30 14:14:12 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
y4 += 32 * 32;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (int row = 0; row < N_DST; ++row) {
|
|
|
|
all_sum = simd_sum(sumf[row]);
|
|
|
|
if (tiisg == 0) {
|
|
|
|
dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum * 0.5f;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
[[host_name("kernel_mul_mv_iq3_xxs_f32")]]
|
|
|
|
kernel void kernel_mul_mv_iq3_xxs_f32(
|
|
|
|
device const void * src0,
|
|
|
|
device const float * src1,
|
|
|
|
device float * dst,
|
|
|
|
constant int64_t & ne00,
|
|
|
|
constant int64_t & ne01,
|
|
|
|
constant int64_t & ne02,
|
|
|
|
constant uint64_t & nb00,
|
|
|
|
constant uint64_t & nb01,
|
|
|
|
constant uint64_t & nb02,
|
2024-10-25 21:26:15 +02:00
|
|
|
constant uint64_t & nb03,
|
2024-01-30 14:14:12 +01:00
|
|
|
constant int64_t & ne10,
|
|
|
|
constant int64_t & ne11,
|
|
|
|
constant int64_t & ne12,
|
|
|
|
constant uint64_t & nb10,
|
|
|
|
constant uint64_t & nb11,
|
|
|
|
constant uint64_t & nb12,
|
2024-10-25 21:26:15 +02:00
|
|
|
constant uint64_t & nb13,
|
2024-01-30 14:14:12 +01:00
|
|
|
constant int64_t & ne0,
|
|
|
|
constant int64_t & ne1,
|
|
|
|
constant uint & r2,
|
|
|
|
constant uint & r3,
|
|
|
|
threadgroup int8_t * shared_values [[threadgroup(0)]],
|
|
|
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
|
|
|
uint tiisg[[thread_index_in_simdgroup]],
|
|
|
|
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
kernel_mul_mv_iq3_xxs_f32_impl(src0, src1, dst, ne00, ne01, ne02, nb01, nb02, nb03, ne10, ne12, nb11, nb12, nb13, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg);
|
2024-01-30 14:14:12 +01:00
|
|
|
}
|
|
|
|
|
2024-02-24 15:23:52 +01:00
|
|
|
void kernel_mul_mv_iq3_s_f32_impl(
|
|
|
|
device const void * src0,
|
|
|
|
device const float * src1,
|
|
|
|
device float * dst,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne00,
|
|
|
|
int64_t ne01,
|
|
|
|
int64_t ne02,
|
2024-10-25 21:26:15 +02:00
|
|
|
uint64_t nb01,
|
|
|
|
uint64_t nb02,
|
|
|
|
uint64_t nb03,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne10,
|
|
|
|
int64_t ne12,
|
2024-10-25 21:26:15 +02:00
|
|
|
uint64_t nb11,
|
|
|
|
uint64_t nb12,
|
|
|
|
uint64_t nb13,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne0,
|
|
|
|
int64_t ne1,
|
|
|
|
uint r2,
|
|
|
|
uint r3,
|
|
|
|
threadgroup int8_t * shared_values,
|
|
|
|
uint3 tgpig,
|
|
|
|
uint tiisg,
|
|
|
|
uint sgitg) {
|
2024-02-24 15:23:52 +01:00
|
|
|
|
|
|
|
const int nb = ne00/QK_K;
|
|
|
|
const int r0 = tgpig.x;
|
|
|
|
const int r1 = tgpig.y;
|
|
|
|
const int im = tgpig.z;
|
|
|
|
|
|
|
|
const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
|
|
|
|
|
|
|
|
const uint i12 = im%ne12;
|
|
|
|
const uint i13 = im/ne12;
|
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
const uint offset0 = first_row*nb01 + (i12/r2)*nb02 + (i13/r3)*nb03;
|
|
|
|
const uint offset1 = r1*nb11 + (i12 )*nb12 + (i13 )*nb13;
|
2024-02-24 15:23:52 +01:00
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
device const block_iq3_s * x = (device const block_iq3_s *) ((device char *) src0 + offset0);
|
|
|
|
device const float * y = (device const float *) ((device char *) src1 + offset1);
|
2024-02-24 15:23:52 +01:00
|
|
|
|
|
|
|
float yl[32];
|
|
|
|
float sumf[N_DST]={0.f}, all_sum;
|
|
|
|
|
|
|
|
const int nb32 = nb * (QK_K / 32);
|
|
|
|
|
|
|
|
threadgroup uint32_t * values = (threadgroup uint32_t *)shared_values;
|
|
|
|
{
|
|
|
|
int nval = 8;
|
|
|
|
int pos = (32*sgitg + tiisg)*nval;
|
2024-03-02 16:00:51 +01:00
|
|
|
for (int i = 0; i < nval; ++i) values[pos + i] = iq3s_grid[pos + i];
|
2024-02-24 15:23:52 +01:00
|
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
|
|
}
|
|
|
|
|
|
|
|
const int ix = tiisg;
|
|
|
|
|
|
|
|
device const float * y4 = y + 32 * ix;
|
|
|
|
|
|
|
|
for (int ib32 = ix; ib32 < nb32; ib32 += 32) {
|
|
|
|
|
|
|
|
for (int i = 0; i < 32; ++i) {
|
|
|
|
yl[i] = y4[i];
|
|
|
|
}
|
|
|
|
|
|
|
|
const int ibl = ib32 / (QK_K / 32);
|
|
|
|
const int ib = ib32 % (QK_K / 32);
|
|
|
|
|
|
|
|
device const block_iq3_s * xr = x + ibl;
|
|
|
|
device const uint8_t * qs = xr->qs + 8 * ib;
|
|
|
|
device const uint8_t * qh = xr->qh + ib;
|
|
|
|
device const uint8_t * sc = xr->scales + (ib/2);
|
|
|
|
device const uint8_t * signs = xr->signs + 4 * ib;
|
|
|
|
device const half * dh = &xr->d;
|
|
|
|
|
|
|
|
for (int row = 0; row < N_DST; row++) {
|
|
|
|
|
|
|
|
const float db = dh[0];
|
2024-03-02 16:00:51 +01:00
|
|
|
const float d = db * (1 + 2*((sc[0] >> 4*(ib%2)) & 0xf));
|
2024-02-24 15:23:52 +01:00
|
|
|
|
|
|
|
float2 sum = {0};
|
|
|
|
for (int l = 0; l < 4; ++l) {
|
2024-03-02 16:00:51 +01:00
|
|
|
const threadgroup uint32_t * table1 = qh[0] & kmask_iq2xs[2*l+0] ? values + 256 : values;
|
|
|
|
const threadgroup uint32_t * table2 = qh[0] & kmask_iq2xs[2*l+1] ? values + 256 : values;
|
|
|
|
const threadgroup uint8_t * grid1 = (const threadgroup uint8_t *)(table1 + qs[2*l+0]);
|
|
|
|
const threadgroup uint8_t * grid2 = (const threadgroup uint8_t *)(table2 + qs[2*l+1]);
|
2024-02-24 15:23:52 +01:00
|
|
|
for (int j = 0; j < 4; ++j) {
|
|
|
|
sum[0] += yl[8*l + j + 0] * grid1[j] * select(1, -1, signs[l] & kmask_iq2xs[j+0]);
|
|
|
|
sum[1] += yl[8*l + j + 4] * grid2[j] * select(1, -1, signs[l] & kmask_iq2xs[j+4]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
sumf[row] += d * (sum[0] + sum[1]);
|
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
dh += nb01/2;
|
|
|
|
qs += nb01;
|
|
|
|
qh += nb01;
|
|
|
|
sc += nb01;
|
|
|
|
signs += nb01;
|
2024-02-24 15:23:52 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
y4 += 32 * 32;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (int row = 0; row < N_DST; ++row) {
|
|
|
|
all_sum = simd_sum(sumf[row]);
|
|
|
|
if (tiisg == 0) {
|
2024-03-02 16:00:51 +01:00
|
|
|
dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum;
|
2024-02-24 15:23:52 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
[[host_name("kernel_mul_mv_iq3_s_f32")]]
|
|
|
|
kernel void kernel_mul_mv_iq3_s_f32(
|
|
|
|
device const void * src0,
|
|
|
|
device const float * src1,
|
|
|
|
device float * dst,
|
|
|
|
constant int64_t & ne00,
|
|
|
|
constant int64_t & ne01,
|
|
|
|
constant int64_t & ne02,
|
|
|
|
constant uint64_t & nb00,
|
|
|
|
constant uint64_t & nb01,
|
|
|
|
constant uint64_t & nb02,
|
2024-10-25 21:26:15 +02:00
|
|
|
constant uint64_t & nb03,
|
2024-02-24 15:23:52 +01:00
|
|
|
constant int64_t & ne10,
|
|
|
|
constant int64_t & ne11,
|
|
|
|
constant int64_t & ne12,
|
|
|
|
constant uint64_t & nb10,
|
|
|
|
constant uint64_t & nb11,
|
|
|
|
constant uint64_t & nb12,
|
2024-10-25 21:26:15 +02:00
|
|
|
constant uint64_t & nb13,
|
2024-02-24 15:23:52 +01:00
|
|
|
constant int64_t & ne0,
|
|
|
|
constant int64_t & ne1,
|
|
|
|
constant uint & r2,
|
|
|
|
constant uint & r3,
|
|
|
|
threadgroup int8_t * shared_values [[threadgroup(0)]],
|
|
|
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
|
|
|
uint tiisg[[thread_index_in_simdgroup]],
|
|
|
|
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
kernel_mul_mv_iq3_s_f32_impl(src0, src1, dst, ne00, ne01, ne02, nb01, nb02, nb03, ne10, ne12, nb11, nb12, nb13, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg);
|
2024-02-24 15:23:52 +01:00
|
|
|
}
|
|
|
|
|
2024-02-26 17:28:38 +01:00
|
|
|
void kernel_mul_mv_iq2_s_f32_impl(
|
|
|
|
device const void * src0,
|
|
|
|
device const float * src1,
|
|
|
|
device float * dst,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne00,
|
|
|
|
int64_t ne01,
|
|
|
|
int64_t ne02,
|
2024-10-25 21:26:15 +02:00
|
|
|
uint64_t nb01,
|
|
|
|
uint64_t nb02,
|
|
|
|
uint64_t nb03,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne10,
|
|
|
|
int64_t ne12,
|
2024-10-25 21:26:15 +02:00
|
|
|
uint64_t nb11,
|
|
|
|
uint64_t nb12,
|
|
|
|
uint64_t nb13,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne0,
|
|
|
|
int64_t ne1,
|
|
|
|
uint r2,
|
|
|
|
uint r3,
|
|
|
|
threadgroup int8_t * shared_values,
|
|
|
|
uint3 tgpig,
|
|
|
|
uint tiisg,
|
|
|
|
uint sgitg) {
|
2024-02-26 17:28:38 +01:00
|
|
|
|
|
|
|
const int nb = ne00/QK_K;
|
|
|
|
const int r0 = tgpig.x;
|
|
|
|
const int r1 = tgpig.y;
|
|
|
|
const int im = tgpig.z;
|
|
|
|
|
|
|
|
const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
|
|
|
|
|
|
|
|
const uint i12 = im%ne12;
|
|
|
|
const uint i13 = im/ne12;
|
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
const uint offset0 = first_row*nb01 + (i12/r2)*nb02 + (i13/r3)*nb03;
|
|
|
|
const uint offset1 = r1*nb11 + (i12 )*nb12 + (i13 )*nb13;
|
2024-02-26 17:28:38 +01:00
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
device const block_iq2_s * x = (device const block_iq2_s *) ((device char *) src0 + offset0);
|
|
|
|
device const float * y = (device const float *) ((device char *) src1 + offset1);
|
2024-02-26 17:28:38 +01:00
|
|
|
|
|
|
|
float yl[32];
|
|
|
|
float sumf[N_DST]={0.f}, all_sum;
|
|
|
|
|
|
|
|
const int nb32 = nb * (QK_K / 32);
|
|
|
|
|
|
|
|
//threadgroup uint64_t * values = (threadgroup uint64_t *)shared_values;
|
|
|
|
//{
|
|
|
|
// int nval = 32;
|
|
|
|
// int pos = (32*sgitg + tiisg)*nval;
|
|
|
|
// for (int i = 0; i < nval; ++i) values[pos + i] = iq2s_grid[pos + i];
|
|
|
|
// threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
|
|
//}
|
|
|
|
|
|
|
|
const int ix = tiisg;
|
|
|
|
|
|
|
|
device const float * y4 = y + 32 * ix;
|
|
|
|
|
|
|
|
for (int ib32 = ix; ib32 < nb32; ib32 += 32) {
|
|
|
|
|
|
|
|
for (int i = 0; i < 32; ++i) {
|
|
|
|
yl[i] = y4[i];
|
|
|
|
}
|
|
|
|
|
|
|
|
const int ibl = ib32 / (QK_K / 32);
|
|
|
|
const int ib = ib32 % (QK_K / 32);
|
|
|
|
|
|
|
|
device const block_iq2_s * xr = x + ibl;
|
|
|
|
device const uint8_t * qs = xr->qs + 4 * ib;
|
|
|
|
device const uint8_t * qh = xr->qh + ib;
|
|
|
|
device const uint8_t * sc = xr->scales + ib;
|
|
|
|
device const uint8_t * signs = qs + QK_K/8;
|
|
|
|
device const half * dh = &xr->d;
|
|
|
|
|
|
|
|
for (int row = 0; row < N_DST; row++) {
|
|
|
|
|
|
|
|
const float db = dh[0];
|
|
|
|
const float d1 = db * (0.5f + (sc[0] & 0xf));
|
|
|
|
const float d2 = db * (0.5f + (sc[0] >> 4));
|
|
|
|
|
|
|
|
float2 sum = {0};
|
|
|
|
for (int l = 0; l < 2; ++l) {
|
|
|
|
//const threadgroup uint8_t * grid1 = (const threadgroup uint8_t *)(values + (qs[l+0] | ((qh[0] << (8-2*l)) & 0x300)));
|
|
|
|
//const threadgroup uint8_t * grid2 = (const threadgroup uint8_t *)(values + (qs[l+2] | ((qh[0] << (4-2*l)) & 0x300)));
|
|
|
|
constant uint8_t * grid1 = (constant uint8_t *)(iq2s_grid + (qs[l+0] | ((qh[0] << (8-2*l)) & 0x300)));
|
|
|
|
constant uint8_t * grid2 = (constant uint8_t *)(iq2s_grid + (qs[l+2] | ((qh[0] << (4-2*l)) & 0x300)));
|
|
|
|
for (int j = 0; j < 8; ++j) {
|
|
|
|
sum[0] += yl[8*l + j + 0] * grid1[j] * select(1, -1, signs[l+0] & kmask_iq2xs[j]);
|
|
|
|
sum[1] += yl[8*l + j + 16] * grid2[j] * select(1, -1, signs[l+2] & kmask_iq2xs[j]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
sumf[row] += d1 * sum[0] + d2 * sum[1];
|
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
dh += nb01/2;
|
|
|
|
qs += nb01;
|
|
|
|
qh += nb01;
|
|
|
|
sc += nb01;
|
|
|
|
signs += nb01;
|
2024-02-26 17:28:38 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
y4 += 32 * 32;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (int row = 0; row < N_DST; ++row) {
|
|
|
|
all_sum = simd_sum(sumf[row]);
|
|
|
|
if (tiisg == 0) {
|
|
|
|
dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum * 0.25f;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
[[host_name("kernel_mul_mv_iq2_s_f32")]]
|
|
|
|
kernel void kernel_mul_mv_iq2_s_f32(
|
|
|
|
device const void * src0,
|
|
|
|
device const float * src1,
|
|
|
|
device float * dst,
|
|
|
|
constant int64_t & ne00,
|
|
|
|
constant int64_t & ne01,
|
|
|
|
constant int64_t & ne02,
|
|
|
|
constant uint64_t & nb00,
|
|
|
|
constant uint64_t & nb01,
|
|
|
|
constant uint64_t & nb02,
|
2024-10-25 21:26:15 +02:00
|
|
|
constant uint64_t & nb03,
|
2024-02-26 17:28:38 +01:00
|
|
|
constant int64_t & ne10,
|
|
|
|
constant int64_t & ne11,
|
|
|
|
constant int64_t & ne12,
|
|
|
|
constant uint64_t & nb10,
|
|
|
|
constant uint64_t & nb11,
|
|
|
|
constant uint64_t & nb12,
|
2024-10-25 21:26:15 +02:00
|
|
|
constant uint64_t & nb13,
|
2024-02-26 17:28:38 +01:00
|
|
|
constant int64_t & ne0,
|
|
|
|
constant int64_t & ne1,
|
|
|
|
constant uint & r2,
|
|
|
|
constant uint & r3,
|
|
|
|
threadgroup int8_t * shared_values [[threadgroup(0)]],
|
|
|
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
|
|
|
uint tiisg[[thread_index_in_simdgroup]],
|
|
|
|
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
kernel_mul_mv_iq2_s_f32_impl(src0, src1, dst, ne00, ne01, ne02, nb01, nb02, nb03, ne10, ne12, nb11, nb12, nb13, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg);
|
2024-02-26 17:28:38 +01:00
|
|
|
}
|
|
|
|
|
2024-02-18 17:16:55 +01:00
|
|
|
void kernel_mul_mv_iq1_s_f32_impl(
|
|
|
|
device const void * src0,
|
|
|
|
device const float * src1,
|
|
|
|
device float * dst,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne00,
|
|
|
|
int64_t ne01,
|
|
|
|
int64_t ne02,
|
2024-10-25 21:26:15 +02:00
|
|
|
uint64_t nb01,
|
|
|
|
uint64_t nb02,
|
|
|
|
uint64_t nb03,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne10,
|
|
|
|
int64_t ne12,
|
2024-10-25 21:26:15 +02:00
|
|
|
uint64_t nb11,
|
|
|
|
uint64_t nb12,
|
|
|
|
uint64_t nb13,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne0,
|
|
|
|
int64_t ne1,
|
|
|
|
uint r2,
|
|
|
|
uint r3,
|
|
|
|
threadgroup int8_t * shared_value,
|
|
|
|
uint3 tgpig,
|
|
|
|
uint tiisg,
|
|
|
|
uint sgitg) {
|
2024-02-18 17:16:55 +01:00
|
|
|
|
|
|
|
const int nb = ne00/QK_K;
|
|
|
|
const int r0 = tgpig.x;
|
|
|
|
const int r1 = tgpig.y;
|
|
|
|
const int im = tgpig.z;
|
|
|
|
|
|
|
|
const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
|
|
|
|
|
|
|
|
const uint i12 = im%ne12;
|
|
|
|
const uint i13 = im/ne12;
|
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
const uint offset0 = first_row*nb01 + (i12/r2)*nb02 + (i13/r3)*nb03;
|
|
|
|
const uint offset1 = r1*nb11 + (i12 )*nb12 + (i13 )*nb13;
|
|
|
|
|
|
|
|
device const block_iq1_s * x = (device const block_iq1_s *) ((device char *) src0 + offset0);
|
|
|
|
device const float * y = (device const float *) ((device char *) src1 + offset1);
|
2024-02-18 17:16:55 +01:00
|
|
|
|
2024-03-11 07:51:49 +01:00
|
|
|
float yl[32];
|
2024-02-18 17:16:55 +01:00
|
|
|
float sumf[N_DST]={0.f}, all_sum;
|
|
|
|
|
|
|
|
const int nb32 = nb * (QK_K / 32);
|
|
|
|
|
2024-03-11 07:51:49 +01:00
|
|
|
const int ix = tiisg;
|
2024-02-18 17:16:55 +01:00
|
|
|
|
2024-03-11 07:51:49 +01:00
|
|
|
device const float * y4 = y + 32 * ix;
|
2024-02-18 17:16:55 +01:00
|
|
|
|
2024-03-11 07:51:49 +01:00
|
|
|
for (int ib32 = ix; ib32 < nb32; ib32 += 32) {
|
2024-02-18 17:16:55 +01:00
|
|
|
|
2024-03-11 07:51:49 +01:00
|
|
|
float sumy = 0;
|
|
|
|
for (int i = 0; i < 32; ++i) {
|
2024-02-18 17:16:55 +01:00
|
|
|
yl[i] = y4[i];
|
2024-03-11 07:51:49 +01:00
|
|
|
sumy += yl[i];
|
2024-02-18 17:16:55 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
const int ibl = ib32 / (QK_K / 32);
|
|
|
|
const int ib = ib32 % (QK_K / 32);
|
|
|
|
|
|
|
|
device const block_iq1_s * xr = x + ibl;
|
2024-03-11 07:51:49 +01:00
|
|
|
device const uint8_t * qs = xr->qs + 4 * ib;
|
|
|
|
device const uint16_t * qh = xr->qh + ib;
|
|
|
|
device const half * dh = &xr->d;
|
2024-02-18 17:16:55 +01:00
|
|
|
|
|
|
|
for (int row = 0; row < N_DST; row++) {
|
|
|
|
|
2024-03-11 07:51:49 +01:00
|
|
|
constant uint8_t * grid1 = (constant uint8_t *)(iq1s_grid_gpu + (qs[0] | ((qh[0] << 8) & 0x700)));
|
|
|
|
constant uint8_t * grid2 = (constant uint8_t *)(iq1s_grid_gpu + (qs[1] | ((qh[0] << 5) & 0x700)));
|
|
|
|
constant uint8_t * grid3 = (constant uint8_t *)(iq1s_grid_gpu + (qs[2] | ((qh[0] << 2) & 0x700)));
|
|
|
|
constant uint8_t * grid4 = (constant uint8_t *)(iq1s_grid_gpu + (qs[3] | ((qh[0] >> 1) & 0x700)));
|
2024-02-18 17:16:55 +01:00
|
|
|
|
2024-03-11 07:51:49 +01:00
|
|
|
float sum = 0;
|
|
|
|
for (int j = 0; j < 4; ++j) {
|
|
|
|
sum += yl[j+ 0] * (grid1[j] & 0xf) + yl[j+ 4] * (grid1[j] >> 4)
|
|
|
|
+ yl[j+ 8] * (grid2[j] & 0xf) + yl[j+12] * (grid2[j] >> 4)
|
|
|
|
+ yl[j+16] * (grid3[j] & 0xf) + yl[j+20] * (grid3[j] >> 4)
|
|
|
|
+ yl[j+24] * (grid4[j] & 0xf) + yl[j+28] * (grid4[j] >> 4);
|
2024-02-18 17:16:55 +01:00
|
|
|
}
|
2024-03-11 16:53:15 +01:00
|
|
|
sumf[row] += (float)dh[0] * (sum + sumy * (qh[0] & 0x8000 ? -1 - IQ1S_DELTA : -1 + IQ1S_DELTA)) * (2*((qh[0] >> 12) & 7) + 1);
|
2024-02-18 17:16:55 +01:00
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
dh += nb01/2;
|
|
|
|
qs += nb01;
|
|
|
|
qh += nb01/2;
|
2024-02-18 17:16:55 +01:00
|
|
|
}
|
|
|
|
|
2024-03-11 07:51:49 +01:00
|
|
|
y4 += 32 * 32;
|
2024-02-18 17:16:55 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
for (int row = 0; row < N_DST; ++row) {
|
|
|
|
all_sum = simd_sum(sumf[row]);
|
|
|
|
if (tiisg == 0) {
|
|
|
|
dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2024-03-26 15:21:27 +01:00
|
|
|
void kernel_mul_mv_iq1_m_f32_impl(
|
|
|
|
device const void * src0,
|
|
|
|
device const float * src1,
|
|
|
|
device float * dst,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne00,
|
|
|
|
int64_t ne01,
|
|
|
|
int64_t ne02,
|
2024-10-25 21:26:15 +02:00
|
|
|
uint64_t nb01,
|
|
|
|
uint64_t nb02,
|
|
|
|
uint64_t nb03,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne10,
|
|
|
|
int64_t ne12,
|
2024-10-25 21:26:15 +02:00
|
|
|
uint64_t nb11,
|
|
|
|
uint64_t nb12,
|
|
|
|
uint64_t nb13,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne0,
|
|
|
|
int64_t ne1,
|
|
|
|
uint r2,
|
|
|
|
uint r3,
|
|
|
|
threadgroup int8_t * shared_value,
|
|
|
|
uint3 tgpig,
|
|
|
|
uint tiisg,
|
|
|
|
uint sgitg) {
|
2024-03-26 15:21:27 +01:00
|
|
|
|
|
|
|
const int nb = ne00/QK_K;
|
|
|
|
const int r0 = tgpig.x;
|
|
|
|
const int r1 = tgpig.y;
|
|
|
|
const int im = tgpig.z;
|
|
|
|
|
|
|
|
const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
|
|
|
|
|
|
|
|
const uint i12 = im%ne12;
|
|
|
|
const uint i13 = im/ne12;
|
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
const uint offset0 = first_row*nb01 + (i12/r2)*nb02 + (i13/r3)*nb03;
|
|
|
|
const uint offset1 = r1*nb11 + (i12 )*nb12 + (i13 )*nb13;
|
|
|
|
|
|
|
|
device const block_iq1_m * x = (device const block_iq1_m *) ((device char *) src0 + offset0);
|
|
|
|
device const float * y = (device const float *) ((device char *) src1 + offset1);
|
2024-03-26 15:21:27 +01:00
|
|
|
|
|
|
|
float yl[32];
|
|
|
|
float sumf[N_DST]={0.f}, all_sum;
|
|
|
|
|
|
|
|
const int nb32 = nb * (QK_K / 32);
|
|
|
|
|
|
|
|
const int ix = tiisg;
|
|
|
|
|
|
|
|
device const float * y4 = y + 32 * ix;
|
|
|
|
|
|
|
|
iq1m_scale_t scale;
|
|
|
|
|
|
|
|
for (int ib32 = ix; ib32 < nb32; ib32 += 32) {
|
|
|
|
|
|
|
|
float4 sumy = {0.f};
|
|
|
|
for (int i = 0; i < 8; ++i) {
|
|
|
|
yl[i+ 0] = y4[i+ 0]; sumy[0] += yl[i+ 0];
|
|
|
|
yl[i+ 8] = y4[i+ 8]; sumy[1] += yl[i+ 8];
|
|
|
|
yl[i+16] = y4[i+16]; sumy[2] += yl[i+16];
|
|
|
|
yl[i+24] = y4[i+24]; sumy[3] += yl[i+24];
|
|
|
|
}
|
|
|
|
|
|
|
|
const int ibl = ib32 / (QK_K / 32);
|
|
|
|
const int ib = ib32 % (QK_K / 32);
|
|
|
|
|
|
|
|
device const block_iq1_m * xr = x + ibl;
|
|
|
|
device const uint8_t * qs = xr->qs + 4 * ib;
|
|
|
|
device const uint8_t * qh = xr->qh + 2 * ib;
|
|
|
|
device const uint16_t * sc = (device const uint16_t *)xr->scales;
|
|
|
|
|
|
|
|
for (int row = 0; row < N_DST; row++) {
|
|
|
|
scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
|
|
|
|
|
|
|
|
constant uint8_t * grid1 = (constant uint8_t *)(iq1s_grid_gpu + (qs[0] | ((qh[0] << 8) & 0x700)));
|
|
|
|
constant uint8_t * grid2 = (constant uint8_t *)(iq1s_grid_gpu + (qs[1] | ((qh[0] << 4) & 0x700)));
|
|
|
|
constant uint8_t * grid3 = (constant uint8_t *)(iq1s_grid_gpu + (qs[2] | ((qh[1] << 8) & 0x700)));
|
|
|
|
constant uint8_t * grid4 = (constant uint8_t *)(iq1s_grid_gpu + (qs[3] | ((qh[1] << 4) & 0x700)));
|
|
|
|
|
|
|
|
float2 sum = {0.f};
|
|
|
|
for (int j = 0; j < 4; ++j) {
|
|
|
|
sum[0] += yl[j+ 0] * (grid1[j] & 0xf) + yl[j+ 4] * (grid1[j] >> 4)
|
|
|
|
+ yl[j+ 8] * (grid2[j] & 0xf) + yl[j+12] * (grid2[j] >> 4);
|
|
|
|
sum[1] += yl[j+16] * (grid3[j] & 0xf) + yl[j+20] * (grid3[j] >> 4)
|
|
|
|
+ yl[j+24] * (grid4[j] & 0xf) + yl[j+28] * (grid4[j] >> 4);
|
|
|
|
}
|
|
|
|
const float delta1 = sumy[0] * (qh[0] & 0x08 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA) + sumy[1] * (qh[0] & 0x80 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA);
|
|
|
|
const float delta2 = sumy[2] * (qh[1] & 0x08 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA) + sumy[3] * (qh[1] & 0x80 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA);
|
2024-05-23 09:00:21 +02:00
|
|
|
|
2024-03-26 15:21:27 +01:00
|
|
|
sumf[row] += (float)scale.f16 * ((sum[0] + delta1) * (2*((sc[ib/2] >> (6*(ib%2)+0)) & 7) + 1) +
|
|
|
|
(sum[1] + delta2) * (2*((sc[ib/2] >> (6*(ib%2)+3)) & 7) + 1));
|
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
sc += nb01/2;
|
|
|
|
qs += nb01;
|
|
|
|
qh += nb01;
|
2024-03-26 15:21:27 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
y4 += 32 * 32;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (int row = 0; row < N_DST; ++row) {
|
|
|
|
all_sum = simd_sum(sumf[row]);
|
|
|
|
if (tiisg == 0) {
|
|
|
|
dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2024-02-21 10:39:52 +01:00
|
|
|
void kernel_mul_mv_iq4_nl_f32_impl(
|
|
|
|
device const void * src0,
|
|
|
|
device const float * src1,
|
|
|
|
device float * dst,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne00,
|
|
|
|
int64_t ne01,
|
|
|
|
int64_t ne02,
|
2024-10-25 21:26:15 +02:00
|
|
|
uint64_t nb01,
|
|
|
|
uint64_t nb02,
|
|
|
|
uint64_t nb03,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne10,
|
|
|
|
int64_t ne12,
|
2024-10-25 21:26:15 +02:00
|
|
|
uint64_t nb11,
|
|
|
|
uint64_t nb12,
|
|
|
|
uint64_t nb13,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne0,
|
|
|
|
int64_t ne1,
|
|
|
|
uint r2,
|
|
|
|
uint r3,
|
|
|
|
threadgroup int8_t * shared_values_i8,
|
|
|
|
uint3 tgpig,
|
|
|
|
uint tiisg,
|
|
|
|
uint sgitg) {
|
2024-02-21 10:39:52 +01:00
|
|
|
|
2024-04-12 18:13:20 +02:00
|
|
|
threadgroup float * shared_values = (threadgroup float *)shared_values_i8;
|
2024-02-21 10:39:52 +01:00
|
|
|
const int nb = ne00/QK4_NL;
|
|
|
|
const int r0 = tgpig.x;
|
|
|
|
const int r1 = tgpig.y;
|
|
|
|
const int im = tgpig.z;
|
|
|
|
const int first_row = (r0 * 2 + sgitg) * 2;
|
|
|
|
|
|
|
|
const uint i12 = im%ne12;
|
|
|
|
const uint i13 = im/ne12;
|
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
const uint offset0 = first_row*nb01 + (i12/r2)*nb02 + (i13/r3)*nb03;
|
|
|
|
const uint offset1 = r1*nb11 + (i12 )*nb12 + (i13 )*nb13;
|
|
|
|
|
|
|
|
device const block_iq4_nl * x = (device const block_iq4_nl *) ((device char *) src0 + offset0);
|
|
|
|
device const float * y = (device const float *) ((device char *) src1 + offset1);
|
2024-02-21 10:39:52 +01:00
|
|
|
|
|
|
|
const int ix = tiisg/2; // 0...15
|
|
|
|
const int it = tiisg%2; // 0 or 1
|
|
|
|
|
|
|
|
shared_values[tiisg] = kvalues_iq4nl_f[tiisg%16];
|
|
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
|
|
|
|
|
|
float4 yl[4];
|
|
|
|
float sumf[2]={0.f}, all_sum;
|
|
|
|
|
|
|
|
device const float * yb = y + ix * QK4_NL + it * 8;
|
|
|
|
|
|
|
|
uint32_t aux32[2];
|
|
|
|
thread const uint8_t * q8 = (thread const uint8_t *)aux32;
|
|
|
|
|
|
|
|
float4 qf1, qf2;
|
|
|
|
|
|
|
|
for (int ib = ix; ib < nb; ib += 16) {
|
|
|
|
|
|
|
|
device const float4 * y4 = (device const float4 *)yb;
|
|
|
|
yl[0] = y4[0]; yl[1] = y4[4]; yl[2] = y4[1]; yl[3] = y4[5];
|
|
|
|
|
2024-07-19 17:17:27 +02:00
|
|
|
for (int row = 0; row < 2 && first_row + row < ne01; ++row) {
|
2024-02-21 10:39:52 +01:00
|
|
|
|
|
|
|
device const block_iq4_nl & xb = x[row*nb + ib];
|
|
|
|
device const uint16_t * q4 = (device const uint16_t *)(xb.qs + 8*it);
|
|
|
|
|
|
|
|
float4 acc1 = {0.f}, acc2 = {0.f};
|
|
|
|
|
|
|
|
aux32[0] = q4[0] | (q4[1] << 16);
|
|
|
|
aux32[1] = (aux32[0] >> 4) & 0x0f0f0f0f;
|
|
|
|
aux32[0] &= 0x0f0f0f0f;
|
|
|
|
qf1 = {shared_values[q8[0]], shared_values[q8[1]], shared_values[q8[2]], shared_values[q8[3]]};
|
|
|
|
qf2 = {shared_values[q8[4]], shared_values[q8[5]], shared_values[q8[6]], shared_values[q8[7]]};
|
|
|
|
acc1 += yl[0] * qf1;
|
|
|
|
acc2 += yl[1] * qf2;
|
|
|
|
|
|
|
|
aux32[0] = q4[2] | (q4[3] << 16);
|
|
|
|
aux32[1] = (aux32[0] >> 4) & 0x0f0f0f0f;
|
|
|
|
aux32[0] &= 0x0f0f0f0f;
|
|
|
|
qf1 = {shared_values[q8[0]], shared_values[q8[1]], shared_values[q8[2]], shared_values[q8[3]]};
|
|
|
|
qf2 = {shared_values[q8[4]], shared_values[q8[5]], shared_values[q8[6]], shared_values[q8[7]]};
|
|
|
|
acc1 += yl[2] * qf1;
|
|
|
|
acc2 += yl[3] * qf2;
|
|
|
|
|
|
|
|
acc1 += acc2;
|
|
|
|
|
|
|
|
sumf[row] += (float)xb.d * (acc1[0] + acc1[1] + acc1[2] + acc1[3]);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
yb += 16 * QK4_NL;
|
|
|
|
}
|
|
|
|
|
2024-07-19 17:17:27 +02:00
|
|
|
for (int row = 0; row < 2 && first_row + row < ne01; ++row) {
|
2024-02-21 10:39:52 +01:00
|
|
|
all_sum = simd_sum(sumf[row]);
|
|
|
|
if (tiisg == 0) {
|
|
|
|
dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2024-02-27 15:34:24 +01:00
|
|
|
void kernel_mul_mv_iq4_xs_f32_impl(
|
|
|
|
device const void * src0,
|
|
|
|
device const float * src1,
|
|
|
|
device float * dst,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne00,
|
|
|
|
int64_t ne01,
|
|
|
|
int64_t ne02,
|
2024-10-25 21:26:15 +02:00
|
|
|
uint64_t nb01,
|
|
|
|
uint64_t nb02,
|
|
|
|
uint64_t nb03,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne10,
|
|
|
|
int64_t ne12,
|
2024-10-25 21:26:15 +02:00
|
|
|
uint64_t nb11,
|
|
|
|
uint64_t nb12,
|
|
|
|
uint64_t nb13,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne0,
|
|
|
|
int64_t ne1,
|
|
|
|
uint r2,
|
|
|
|
uint r3,
|
|
|
|
threadgroup int8_t * shared_values_i8,
|
|
|
|
uint3 tgpig,
|
|
|
|
uint tiisg,
|
|
|
|
uint sgitg) {
|
|
|
|
|
2024-04-12 18:13:20 +02:00
|
|
|
threadgroup float * shared_values = (threadgroup float *)shared_values_i8;
|
2024-02-27 15:34:24 +01:00
|
|
|
const int nb = ne00/QK_K;
|
|
|
|
const int r0 = tgpig.x;
|
|
|
|
const int r1 = tgpig.y;
|
|
|
|
const int im = tgpig.z;
|
|
|
|
const int first_row = (r0 * 2 + sgitg) * 2;
|
|
|
|
|
|
|
|
const uint i12 = im%ne12;
|
|
|
|
const uint i13 = im/ne12;
|
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
const uint offset0 = first_row*nb01 + (i12/r2)*nb02 + (i13/r3)*nb03;
|
|
|
|
const uint offset1 = r1*nb11 + (i12 )*nb12 + (i13 )*nb13;
|
|
|
|
|
|
|
|
device const block_iq4_xs * x = (device const block_iq4_xs *) ((device char *) src0 + offset0);
|
|
|
|
device const float * y = (device const float *) ((device char *) src1 + offset1);
|
2024-02-27 15:34:24 +01:00
|
|
|
|
|
|
|
const int ix = tiisg/16; // 0 or 1
|
|
|
|
const int it = tiisg%16; // 0...15
|
|
|
|
const int ib = it/2;
|
|
|
|
const int il = it%2;
|
|
|
|
|
|
|
|
shared_values[tiisg] = kvalues_iq4nl_f[tiisg%16];
|
|
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
|
|
|
|
|
|
float4 yl[4];
|
|
|
|
float sumf[2]={0.f}, all_sum;
|
|
|
|
|
|
|
|
device const float * yb = y + ix * QK_K + ib * 32 + il * 8;
|
|
|
|
|
|
|
|
uint32_t aux32[2];
|
|
|
|
thread const uint8_t * q8 = (thread const uint8_t *)aux32;
|
|
|
|
|
|
|
|
float4 qf1, qf2;
|
|
|
|
|
|
|
|
for (int ibl = ix; ibl < nb; ibl += 2) {
|
|
|
|
|
|
|
|
device const float4 * y4 = (device const float4 *)yb;
|
|
|
|
yl[0] = y4[0]; yl[1] = y4[4]; yl[2] = y4[1]; yl[3] = y4[5];
|
|
|
|
|
|
|
|
for (int row = 0; row < 2; ++row) {
|
|
|
|
|
|
|
|
device const block_iq4_xs & xb = x[row*nb + ibl];
|
|
|
|
device const uint32_t * q4 = (device const uint32_t *)(xb.qs + 16*ib + 8*il);
|
|
|
|
|
|
|
|
float4 acc1 = {0.f}, acc2 = {0.f};
|
|
|
|
|
|
|
|
aux32[0] = q4[0] & 0x0f0f0f0f;
|
|
|
|
aux32[1] = (q4[0] >> 4) & 0x0f0f0f0f;
|
|
|
|
qf1 = {shared_values[q8[0]], shared_values[q8[1]], shared_values[q8[2]], shared_values[q8[3]]};
|
|
|
|
qf2 = {shared_values[q8[4]], shared_values[q8[5]], shared_values[q8[6]], shared_values[q8[7]]};
|
|
|
|
acc1 += yl[0] * qf1;
|
|
|
|
acc2 += yl[1] * qf2;
|
|
|
|
|
|
|
|
aux32[0] = q4[1] & 0x0f0f0f0f;
|
|
|
|
aux32[1] = (q4[1] >> 4) & 0x0f0f0f0f;
|
|
|
|
qf1 = {shared_values[q8[0]], shared_values[q8[1]], shared_values[q8[2]], shared_values[q8[3]]};
|
|
|
|
qf2 = {shared_values[q8[4]], shared_values[q8[5]], shared_values[q8[6]], shared_values[q8[7]]};
|
|
|
|
acc1 += yl[2] * qf1;
|
|
|
|
acc2 += yl[3] * qf2;
|
|
|
|
|
|
|
|
acc1 += acc2;
|
|
|
|
|
|
|
|
const int ls = (((xb.scales_l[ib/2] >> 4*(ib%2)) & 0xf) | (((xb.scales_h >> 2*ib) & 3) << 4)) - 32;
|
|
|
|
sumf[row] += (float)xb.d * ls * (acc1[0] + acc1[1] + acc1[2] + acc1[3]);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
yb += 2 * QK_K;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (int row = 0; row < 2; ++row) {
|
|
|
|
all_sum = simd_sum(sumf[row]);
|
|
|
|
if (tiisg == 0) {
|
|
|
|
dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2024-02-18 17:16:55 +01:00
|
|
|
[[host_name("kernel_mul_mv_iq1_s_f32")]]
|
|
|
|
kernel void kernel_mul_mv_iq1_s_f32(
|
|
|
|
device const void * src0,
|
|
|
|
device const float * src1,
|
|
|
|
device float * dst,
|
|
|
|
constant int64_t & ne00,
|
|
|
|
constant int64_t & ne01,
|
|
|
|
constant int64_t & ne02,
|
|
|
|
constant uint64_t & nb00,
|
|
|
|
constant uint64_t & nb01,
|
|
|
|
constant uint64_t & nb02,
|
2024-10-25 21:26:15 +02:00
|
|
|
constant uint64_t & nb03,
|
2024-02-18 17:16:55 +01:00
|
|
|
constant int64_t & ne10,
|
|
|
|
constant int64_t & ne11,
|
|
|
|
constant int64_t & ne12,
|
|
|
|
constant uint64_t & nb10,
|
|
|
|
constant uint64_t & nb11,
|
|
|
|
constant uint64_t & nb12,
|
2024-10-25 21:26:15 +02:00
|
|
|
constant uint64_t & nb13,
|
2024-02-18 17:16:55 +01:00
|
|
|
constant int64_t & ne0,
|
|
|
|
constant int64_t & ne1,
|
|
|
|
constant uint & r2,
|
|
|
|
constant uint & r3,
|
|
|
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
|
|
|
uint tiisg[[thread_index_in_simdgroup]],
|
|
|
|
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
kernel_mul_mv_iq1_s_f32_impl(src0, src1, dst, ne00, ne01, ne02, nb01, nb02, nb03, ne10, ne12, nb11, nb12, nb13, ne0, ne1, r2, r3, nullptr, tgpig, tiisg, sgitg);
|
2024-02-18 17:16:55 +01:00
|
|
|
}
|
|
|
|
|
2024-03-26 15:21:27 +01:00
|
|
|
[[host_name("kernel_mul_mv_iq1_m_f32")]]
|
|
|
|
kernel void kernel_mul_mv_iq1_m_f32(
|
|
|
|
device const void * src0,
|
|
|
|
device const float * src1,
|
|
|
|
device float * dst,
|
|
|
|
constant int64_t & ne00,
|
|
|
|
constant int64_t & ne01,
|
|
|
|
constant int64_t & ne02,
|
|
|
|
constant uint64_t & nb00,
|
|
|
|
constant uint64_t & nb01,
|
|
|
|
constant uint64_t & nb02,
|
2024-10-25 21:26:15 +02:00
|
|
|
constant uint64_t & nb03,
|
2024-03-26 15:21:27 +01:00
|
|
|
constant int64_t & ne10,
|
|
|
|
constant int64_t & ne11,
|
|
|
|
constant int64_t & ne12,
|
|
|
|
constant uint64_t & nb10,
|
|
|
|
constant uint64_t & nb11,
|
|
|
|
constant uint64_t & nb12,
|
2024-10-25 21:26:15 +02:00
|
|
|
constant uint64_t & nb13,
|
2024-03-26 15:21:27 +01:00
|
|
|
constant int64_t & ne0,
|
|
|
|
constant int64_t & ne1,
|
|
|
|
constant uint & r2,
|
|
|
|
constant uint & r3,
|
|
|
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
|
|
|
uint tiisg[[thread_index_in_simdgroup]],
|
|
|
|
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
kernel_mul_mv_iq1_m_f32_impl(src0, src1, dst, ne00, ne01, ne02, nb01, nb02, nb03, ne10, ne12, nb11, nb12, nb13, ne0, ne1, r2, r3, nullptr, tgpig, tiisg, sgitg);
|
2024-03-26 15:21:27 +01:00
|
|
|
}
|
|
|
|
|
2024-02-21 10:39:52 +01:00
|
|
|
[[host_name("kernel_mul_mv_iq4_nl_f32")]]
|
|
|
|
kernel void kernel_mul_mv_iq4_nl_f32(
|
|
|
|
device const void * src0,
|
|
|
|
device const float * src1,
|
|
|
|
device float * dst,
|
|
|
|
constant int64_t & ne00,
|
|
|
|
constant int64_t & ne01,
|
|
|
|
constant int64_t & ne02,
|
|
|
|
constant uint64_t & nb00,
|
|
|
|
constant uint64_t & nb01,
|
|
|
|
constant uint64_t & nb02,
|
2024-10-25 21:26:15 +02:00
|
|
|
constant uint64_t & nb03,
|
2024-02-21 10:39:52 +01:00
|
|
|
constant int64_t & ne10,
|
|
|
|
constant int64_t & ne11,
|
|
|
|
constant int64_t & ne12,
|
|
|
|
constant uint64_t & nb10,
|
|
|
|
constant uint64_t & nb11,
|
|
|
|
constant uint64_t & nb12,
|
2024-10-25 21:26:15 +02:00
|
|
|
constant uint64_t & nb13,
|
2024-02-21 10:39:52 +01:00
|
|
|
constant int64_t & ne0,
|
|
|
|
constant int64_t & ne1,
|
|
|
|
constant uint & r2,
|
|
|
|
constant uint & r3,
|
2024-04-12 18:13:20 +02:00
|
|
|
threadgroup int8_t * shared_values [[threadgroup(0)]],
|
2024-02-21 10:39:52 +01:00
|
|
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
|
|
|
uint tiisg[[thread_index_in_simdgroup]],
|
|
|
|
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
kernel_mul_mv_iq4_nl_f32_impl(src0, src1, dst, ne00, ne01, ne02, nb01, nb02, nb03, ne10, ne12, nb11, nb12, nb13, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg);
|
2024-02-21 10:39:52 +01:00
|
|
|
}
|
2024-01-30 14:14:12 +01:00
|
|
|
|
2024-02-27 15:34:24 +01:00
|
|
|
[[host_name("kernel_mul_mv_iq4_xs_f32")]]
|
|
|
|
kernel void kernel_mul_mv_iq4_xs_f32(
|
|
|
|
device const void * src0,
|
|
|
|
device const float * src1,
|
|
|
|
device float * dst,
|
|
|
|
constant int64_t & ne00,
|
|
|
|
constant int64_t & ne01,
|
|
|
|
constant int64_t & ne02,
|
|
|
|
constant uint64_t & nb00,
|
|
|
|
constant uint64_t & nb01,
|
|
|
|
constant uint64_t & nb02,
|
2024-10-25 21:26:15 +02:00
|
|
|
constant uint64_t & nb03,
|
2024-02-27 15:34:24 +01:00
|
|
|
constant int64_t & ne10,
|
|
|
|
constant int64_t & ne11,
|
|
|
|
constant int64_t & ne12,
|
|
|
|
constant uint64_t & nb10,
|
|
|
|
constant uint64_t & nb11,
|
|
|
|
constant uint64_t & nb12,
|
2024-10-25 21:26:15 +02:00
|
|
|
constant uint64_t & nb13,
|
2024-02-27 15:34:24 +01:00
|
|
|
constant int64_t & ne0,
|
|
|
|
constant int64_t & ne1,
|
|
|
|
constant uint & r2,
|
|
|
|
constant uint & r3,
|
2024-04-12 18:13:20 +02:00
|
|
|
threadgroup int8_t * shared_values [[threadgroup(0)]],
|
2024-02-27 15:34:24 +01:00
|
|
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
|
|
|
uint tiisg[[thread_index_in_simdgroup]],
|
|
|
|
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
kernel_mul_mv_iq4_xs_f32_impl(src0, src1, dst, ne00, ne01, ne02, nb01, nb02, nb03, ne10, ne12, nb11, nb12, nb13, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg);
|
2024-02-27 15:34:24 +01:00
|
|
|
}
|
|
|
|
|
2023-08-16 22:07:04 +02:00
|
|
|
template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread float4x4 &)>
|
2024-07-13 17:32:33 +02:00
|
|
|
kernel void kernel_get_rows_q(
|
2023-08-16 22:07:04 +02:00
|
|
|
device const void * src0,
|
2024-07-13 17:32:33 +02:00
|
|
|
device const void * src1,
|
2023-08-16 22:07:04 +02:00
|
|
|
device float * dst,
|
|
|
|
constant int64_t & ne00,
|
|
|
|
constant uint64_t & nb01,
|
2023-12-13 13:04:25 +01:00
|
|
|
constant uint64_t & nb02,
|
|
|
|
constant int64_t & ne10,
|
|
|
|
constant uint64_t & nb10,
|
|
|
|
constant uint64_t & nb11,
|
2023-08-16 22:07:04 +02:00
|
|
|
constant uint64_t & nb1,
|
2023-12-13 13:04:25 +01:00
|
|
|
constant uint64_t & nb2,
|
|
|
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
2023-08-16 22:07:04 +02:00
|
|
|
uint tiitg[[thread_index_in_threadgroup]],
|
2023-12-13 13:04:25 +01:00
|
|
|
uint3 tptg [[threads_per_threadgroup]]) {
|
|
|
|
const int64_t i10 = tgpig.x;
|
|
|
|
const int64_t i11 = tgpig.y;
|
|
|
|
|
2024-07-13 17:32:33 +02:00
|
|
|
const int64_t r = ((const device int32_t *) ((const device char *) src1 + i11*nb11 + i10*nb10))[0];
|
2023-12-13 13:04:25 +01:00
|
|
|
|
|
|
|
const int64_t i02 = i11;
|
|
|
|
|
|
|
|
for (int64_t ind = tiitg; ind < ne00/16; ind += tptg.x) {
|
2023-08-16 22:07:04 +02:00
|
|
|
float4x4 temp;
|
2024-07-13 17:32:33 +02:00
|
|
|
dequantize_func(((device const block_q *) ((const device char *) src0 + r*nb01 + i02*nb02)) + ind/nl, ind%nl, temp);
|
2023-12-13 13:04:25 +01:00
|
|
|
*(((device float4x4 *) ((device char *) dst + i11*nb2 + i10*nb1)) + ind) = temp;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2024-07-13 17:32:33 +02:00
|
|
|
template<typename T>
|
|
|
|
kernel void kernel_get_rows_f(
|
2023-12-13 13:04:25 +01:00
|
|
|
device const void * src0,
|
2024-07-13 17:32:33 +02:00
|
|
|
device const void * src1,
|
2023-12-13 13:04:25 +01:00
|
|
|
device float * dst,
|
|
|
|
constant int64_t & ne00,
|
|
|
|
constant uint64_t & nb01,
|
|
|
|
constant uint64_t & nb02,
|
|
|
|
constant int64_t & ne10,
|
|
|
|
constant uint64_t & nb10,
|
|
|
|
constant uint64_t & nb11,
|
|
|
|
constant uint64_t & nb1,
|
|
|
|
constant uint64_t & nb2,
|
|
|
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
|
|
|
uint tiitg[[thread_index_in_threadgroup]],
|
|
|
|
uint3 tptg [[threads_per_threadgroup]]) {
|
|
|
|
const int64_t i10 = tgpig.x;
|
|
|
|
const int64_t i11 = tgpig.y;
|
|
|
|
|
2024-07-13 17:32:33 +02:00
|
|
|
const int64_t r = ((const device int32_t *) ((const device char *) src1 + i11*nb11 + i10*nb10))[0];
|
2023-12-13 13:04:25 +01:00
|
|
|
|
|
|
|
const int64_t i02 = i11;
|
|
|
|
|
|
|
|
for (int ind = tiitg; ind < ne00; ind += tptg.x) {
|
2024-07-13 17:32:33 +02:00
|
|
|
(( device float *) (( device char *) dst + i11*nb2 + i10*nb1))[ind] =
|
|
|
|
((const device T *) ((const device char *) src0 + i02*nb02 + r*nb01))[ind];
|
2023-08-16 22:07:04 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2024-01-03 10:35:46 +01:00
|
|
|
kernel void kernel_get_rows_i32(
|
|
|
|
device const void * src0,
|
2024-07-13 17:32:33 +02:00
|
|
|
device const void * src1,
|
2024-01-03 10:35:46 +01:00
|
|
|
device int32_t * dst,
|
|
|
|
constant int64_t & ne00,
|
|
|
|
constant uint64_t & nb01,
|
|
|
|
constant uint64_t & nb02,
|
|
|
|
constant int64_t & ne10,
|
|
|
|
constant uint64_t & nb10,
|
|
|
|
constant uint64_t & nb11,
|
|
|
|
constant uint64_t & nb1,
|
|
|
|
constant uint64_t & nb2,
|
|
|
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
|
|
|
uint tiitg[[thread_index_in_threadgroup]],
|
|
|
|
uint3 tptg [[threads_per_threadgroup]]) {
|
|
|
|
const int64_t i10 = tgpig.x;
|
|
|
|
const int64_t i11 = tgpig.y;
|
|
|
|
|
2024-07-13 17:32:33 +02:00
|
|
|
const int64_t r = ((const device int32_t *) ((const device char *) src1 + i11*nb11 + i10*nb10))[0];
|
2024-01-03 10:35:46 +01:00
|
|
|
|
|
|
|
const int64_t i02 = i11;
|
|
|
|
|
|
|
|
for (int ind = tiitg; ind < ne00; ind += tptg.x) {
|
2024-07-13 17:32:33 +02:00
|
|
|
(( device int32_t *) (( device char *) dst + i11*nb2 + i10*nb1))[ind] =
|
|
|
|
((const device int32_t *) ((const device char *) src0 + i02*nb02 + r*nb01))[ind];
|
2024-01-03 10:35:46 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2023-08-16 22:07:04 +02:00
|
|
|
#define BLOCK_SIZE_M 64 // 8 simdgroup matrices from matrix A
|
2023-10-08 09:01:53 +02:00
|
|
|
#define BLOCK_SIZE_N 32 // 4 simdgroup matrices from matrix B
|
2023-08-16 22:07:04 +02:00
|
|
|
#define BLOCK_SIZE_K 32
|
|
|
|
#define THREAD_MAT_M 4 // each thread take 4 simdgroup matrices from matrix A
|
|
|
|
#define THREAD_MAT_N 2 // each thread take 2 simdgroup matrices from matrix B
|
|
|
|
#define THREAD_PER_BLOCK 128
|
|
|
|
#define THREAD_PER_ROW 2 // 2 thread for each row in matrix A to load numbers
|
|
|
|
#define THREAD_PER_COL 4 // 4 thread for each row in matrix B to load numbers
|
|
|
|
#define SG_MAT_SIZE 64 // simdgroup matrix is of shape 8x8
|
|
|
|
#define SG_MAT_ROW 8
|
|
|
|
|
|
|
|
// each block_q contains 16*nl weights
|
2024-07-13 17:32:33 +02:00
|
|
|
template<typename T, typename T4x4, typename simdgroup_T8x8, typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread T4x4 &)>
|
|
|
|
kernel void kernel_mul_mm(device const uchar * src0,
|
|
|
|
device const uchar * src1,
|
|
|
|
device float * dst,
|
|
|
|
constant int64_t & ne00,
|
|
|
|
constant int64_t & ne02,
|
|
|
|
constant uint64_t & nb01,
|
|
|
|
constant uint64_t & nb02,
|
2024-10-25 21:26:15 +02:00
|
|
|
constant uint64_t & nb03,
|
2024-07-13 17:32:33 +02:00
|
|
|
constant int64_t & ne12,
|
|
|
|
constant uint64_t & nb10,
|
|
|
|
constant uint64_t & nb11,
|
|
|
|
constant uint64_t & nb12,
|
2024-10-25 21:26:15 +02:00
|
|
|
constant uint64_t & nb13,
|
2024-07-13 17:32:33 +02:00
|
|
|
constant int64_t & ne0,
|
|
|
|
constant int64_t & ne1,
|
|
|
|
constant uint & r2,
|
|
|
|
constant uint & r3,
|
|
|
|
threadgroup uchar * shared_memory [[threadgroup(0)]],
|
|
|
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
|
|
|
uint tiitg[[thread_index_in_threadgroup]],
|
|
|
|
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
2023-09-15 10:09:24 +02:00
|
|
|
|
2024-07-13 17:32:33 +02:00
|
|
|
threadgroup T * sa = (threadgroup T *)(shared_memory);
|
2023-08-16 22:07:04 +02:00
|
|
|
threadgroup float * sb = (threadgroup float *)(shared_memory + 4096);
|
|
|
|
|
|
|
|
const uint r0 = tgpig.y;
|
|
|
|
const uint r1 = tgpig.x;
|
|
|
|
const uint im = tgpig.z;
|
2023-10-08 09:01:53 +02:00
|
|
|
|
2023-08-16 22:07:04 +02:00
|
|
|
// if this block is of 64x32 shape or smaller
|
2024-11-09 10:53:13 +01:00
|
|
|
short n_rows = (ne0 - r0*BLOCK_SIZE_M < BLOCK_SIZE_M) ? (ne0 - r0*BLOCK_SIZE_M) : BLOCK_SIZE_M;
|
|
|
|
short n_cols = (ne1 - r1*BLOCK_SIZE_N < BLOCK_SIZE_N) ? (ne1 - r1*BLOCK_SIZE_N) : BLOCK_SIZE_N;
|
2023-10-08 09:01:53 +02:00
|
|
|
|
2023-08-16 22:07:04 +02:00
|
|
|
// a thread shouldn't load data outside of the matrix
|
|
|
|
short thread_row = ((short)tiitg/THREAD_PER_ROW) < n_rows ? ((short)tiitg/THREAD_PER_ROW) : n_rows - 1;
|
|
|
|
short thread_col = ((short)tiitg/THREAD_PER_COL) < n_cols ? ((short)tiitg/THREAD_PER_COL) : n_cols - 1;
|
|
|
|
|
2024-07-13 17:32:33 +02:00
|
|
|
simdgroup_T8x8 ma[4];
|
2023-08-16 22:07:04 +02:00
|
|
|
simdgroup_float8x8 mb[2];
|
2024-11-09 10:53:13 +01:00
|
|
|
simdgroup_float8x8 mc[8];
|
|
|
|
|
|
|
|
for (short i = 0; i < 8; i++){
|
|
|
|
mc[i] = make_filled_simdgroup_matrix<float, 8>(0.f);
|
2023-08-16 22:07:04 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
short il = (tiitg % THREAD_PER_ROW);
|
2023-09-15 10:09:24 +02:00
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
const uint i12 = im%ne12;
|
|
|
|
const uint i13 = im/ne12;
|
|
|
|
|
2024-10-25 21:26:15 +02:00
|
|
|
uint offset0 = (i12/r2)*nb02 + (i13/r3)*nb03;
|
2023-09-15 10:09:24 +02:00
|
|
|
ushort offset1 = il/nl;
|
|
|
|
|
2024-11-09 10:53:13 +01:00
|
|
|
device const block_q * x = (device const block_q *)(src0 + (r0*BLOCK_SIZE_M + thread_row)*nb01 + offset0) + offset1;
|
2023-09-15 10:09:24 +02:00
|
|
|
device const float * y = (device const float *)(src1
|
2024-10-25 21:26:15 +02:00
|
|
|
+ nb13 * i13
|
|
|
|
+ nb12 * i12
|
2023-09-15 10:09:24 +02:00
|
|
|
+ nb11 * (r1 * BLOCK_SIZE_N + thread_col)
|
|
|
|
+ nb10 * (BLOCK_SIZE_K / THREAD_PER_COL * (tiitg % THREAD_PER_COL)));
|
2023-08-16 22:07:04 +02:00
|
|
|
|
|
|
|
for (int loop_k = 0; loop_k < ne00; loop_k += BLOCK_SIZE_K) {
|
2023-10-08 09:01:53 +02:00
|
|
|
// load data and store to threadgroup memory
|
2024-07-13 17:32:33 +02:00
|
|
|
T4x4 temp_a;
|
2023-08-16 22:07:04 +02:00
|
|
|
dequantize_func(x, il, temp_a);
|
2023-08-22 08:18:40 +02:00
|
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
2023-10-08 09:01:53 +02:00
|
|
|
|
2023-08-16 22:07:04 +02:00
|
|
|
#pragma unroll(16)
|
2024-11-09 10:53:13 +01:00
|
|
|
for (short i = 0; i < 16; i++) {
|
|
|
|
*(sa + SG_MAT_SIZE * ((tiitg/THREAD_PER_ROW/8) \
|
|
|
|
+ (tiitg%THREAD_PER_ROW)*16 + (i/8)*8) \
|
|
|
|
+ (tiitg/THREAD_PER_ROW)%8 + (i&7)*8) = temp_a[i/4][i%4];
|
2023-08-16 22:07:04 +02:00
|
|
|
}
|
2023-10-08 09:01:53 +02:00
|
|
|
|
2024-11-09 10:53:13 +01:00
|
|
|
*(threadgroup float2x4 *)(sb + (tiitg % THREAD_PER_COL)*8*32 + 8*(tiitg/THREAD_PER_COL)) = *((device float2x4 *) y);
|
2023-10-08 09:01:53 +02:00
|
|
|
|
2023-08-16 22:07:04 +02:00
|
|
|
il = (il + 2 < nl) ? il + 2 : il % 2;
|
|
|
|
x = (il < 2) ? x + (2+nl-1)/nl : x;
|
|
|
|
y += BLOCK_SIZE_K;
|
|
|
|
|
|
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
2023-10-08 09:01:53 +02:00
|
|
|
|
|
|
|
// load matrices from threadgroup memory and conduct outer products
|
2024-11-09 10:53:13 +01:00
|
|
|
threadgroup T * lsma = (sa + THREAD_MAT_M*SG_MAT_SIZE*(sgitg%2));
|
|
|
|
threadgroup float * lsmb = (sb + THREAD_MAT_N*SG_MAT_SIZE*(sgitg/2));
|
2023-10-08 09:01:53 +02:00
|
|
|
|
2023-08-16 22:07:04 +02:00
|
|
|
#pragma unroll(4)
|
2024-11-09 10:53:13 +01:00
|
|
|
for (short ik = 0; ik < BLOCK_SIZE_K / 8; ik++) {
|
2023-08-16 22:07:04 +02:00
|
|
|
#pragma unroll(4)
|
2024-11-09 10:53:13 +01:00
|
|
|
for (short i = 0; i < 4; i++) {
|
|
|
|
simdgroup_load(ma[i], lsma + SG_MAT_SIZE * i);
|
2023-08-16 22:07:04 +02:00
|
|
|
}
|
|
|
|
simdgroup_barrier(mem_flags::mem_none);
|
|
|
|
#pragma unroll(2)
|
2024-11-09 10:53:13 +01:00
|
|
|
for (short i = 0; i < 2; i++) {
|
|
|
|
simdgroup_load(mb[i], lsmb + SG_MAT_SIZE * i);
|
2023-08-16 22:07:04 +02:00
|
|
|
}
|
|
|
|
|
2024-11-09 10:53:13 +01:00
|
|
|
lsma += BLOCK_SIZE_M/SG_MAT_ROW * SG_MAT_SIZE;
|
|
|
|
lsmb += BLOCK_SIZE_N/SG_MAT_ROW * SG_MAT_SIZE;
|
2023-10-08 09:01:53 +02:00
|
|
|
|
2023-08-16 22:07:04 +02:00
|
|
|
#pragma unroll(8)
|
2024-11-09 10:53:13 +01:00
|
|
|
for (short i = 0; i < 8; i++){
|
|
|
|
simdgroup_multiply_accumulate(mc[i], mb[i/4], ma[i%4], mc[i]);
|
2023-08-16 22:07:04 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((r0 + 1) * BLOCK_SIZE_M <= ne0 && (r1 + 1) * BLOCK_SIZE_N <= ne1) {
|
2023-10-08 09:01:53 +02:00
|
|
|
device float * C = dst + (BLOCK_SIZE_M * r0 + 32 * (sgitg & 1)) \
|
|
|
|
+ (BLOCK_SIZE_N * r1 + 16 * (sgitg >> 1)) * ne0 + im*ne1*ne0;
|
2024-11-09 10:53:13 +01:00
|
|
|
for (short i = 0; i < 8; i++) {
|
|
|
|
simdgroup_store(mc[i], C + 8 * (i%4) + 8 * ne0 * (i/4), ne0);
|
2023-08-16 22:07:04 +02:00
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// block is smaller than 64x32, we should avoid writing data outside of the matrix
|
2023-08-22 08:18:40 +02:00
|
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
2024-11-09 10:53:13 +01:00
|
|
|
threadgroup float * temp_str = ((threadgroup float *) shared_memory) \
|
|
|
|
+ 32 * (sgitg&1) + (16 * (sgitg>>1))*BLOCK_SIZE_M;
|
|
|
|
for (short i = 0; i < 8; i++) {
|
|
|
|
simdgroup_store(mc[i], temp_str + 8*(i%4) + 8*BLOCK_SIZE_M*(i/4), BLOCK_SIZE_M);
|
2023-08-16 22:07:04 +02:00
|
|
|
}
|
|
|
|
|
2023-08-22 08:18:40 +02:00
|
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
2023-10-08 09:01:53 +02:00
|
|
|
|
|
|
|
if (sgitg == 0) {
|
2024-11-09 10:53:13 +01:00
|
|
|
for (int j = tiitg; j < n_cols; j += BLOCK_SIZE_N) {
|
|
|
|
device float * D = dst + (r0*BLOCK_SIZE_M) + (r1*BLOCK_SIZE_N + j)*ne0 + im*ne1*ne0;
|
|
|
|
device float4 * D4 = (device float4 *) D;
|
|
|
|
|
|
|
|
threadgroup float * C = temp_str + (j*BLOCK_SIZE_M);
|
|
|
|
threadgroup float4 * C4 = (threadgroup float4 *) C;
|
|
|
|
|
|
|
|
int i = 0;
|
|
|
|
for (; i < n_rows/4; i++) {
|
|
|
|
*(D4 + i) = *(C4 + i);
|
|
|
|
}
|
|
|
|
|
|
|
|
i *= 4;
|
|
|
|
for (; i < n_rows; i++) {
|
|
|
|
*(D + i) = *(C + i);
|
2023-08-16 22:07:04 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2023-06-08 18:46:22 +02:00
|
|
|
}
|
|
|
|
}
|
2023-08-16 22:07:04 +02:00
|
|
|
|
2024-04-18 15:18:48 +02:00
|
|
|
// same as kernel_mul_mm_impl, but src1 and dst are accessed via indices stored in rowids
|
2024-01-02 20:07:47 +01:00
|
|
|
template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread half4x4 &)>
|
|
|
|
void kernel_mul_mm_id_impl(
|
|
|
|
device const uchar * src0,
|
|
|
|
device const uchar * src1,
|
2024-04-18 15:18:48 +02:00
|
|
|
threadgroup ushort2 * rowids,
|
2024-01-02 20:07:47 +01:00
|
|
|
device float * dst,
|
|
|
|
constant int64_t & ne00,
|
|
|
|
constant int64_t & ne02,
|
|
|
|
constant uint64_t & nb01,
|
|
|
|
constant uint64_t & nb02,
|
2024-04-18 15:18:48 +02:00
|
|
|
constant int64_t & ne11,
|
2024-01-02 20:07:47 +01:00
|
|
|
constant int64_t & ne12,
|
|
|
|
constant uint64_t & nb10,
|
|
|
|
constant uint64_t & nb11,
|
|
|
|
constant uint64_t & nb12,
|
|
|
|
constant int64_t & ne0,
|
|
|
|
int64_t ne1,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne0ne1,
|
2024-01-02 20:07:47 +01:00
|
|
|
threadgroup uchar * shared_memory,
|
|
|
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
|
|
|
uint tiitg[[thread_index_in_threadgroup]],
|
|
|
|
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
|
|
|
|
|
|
|
threadgroup half * sa = (threadgroup half *)(shared_memory);
|
|
|
|
threadgroup float * sb = (threadgroup float *)(shared_memory + 4096);
|
|
|
|
|
|
|
|
const uint r0 = tgpig.y;
|
|
|
|
const uint r1 = tgpig.x;
|
|
|
|
|
|
|
|
if (r1 * BLOCK_SIZE_N >= ne1) return;
|
|
|
|
|
|
|
|
// if this block is of 64x32 shape or smaller
|
|
|
|
short n_rows = (ne0 - r0 * BLOCK_SIZE_M < BLOCK_SIZE_M) ? (ne0 - r0 * BLOCK_SIZE_M) : BLOCK_SIZE_M;
|
|
|
|
short n_cols = (ne1 - r1 * BLOCK_SIZE_N < BLOCK_SIZE_N) ? (ne1 - r1 * BLOCK_SIZE_N) : BLOCK_SIZE_N;
|
|
|
|
|
|
|
|
// a thread shouldn't load data outside of the matrix
|
|
|
|
short thread_row = ((short)tiitg/THREAD_PER_ROW) < n_rows ? ((short)tiitg/THREAD_PER_ROW) : n_rows - 1;
|
|
|
|
short thread_col = ((short)tiitg/THREAD_PER_COL) < n_cols ? ((short)tiitg/THREAD_PER_COL) : n_cols - 1;
|
|
|
|
|
|
|
|
simdgroup_half8x8 ma[4];
|
|
|
|
simdgroup_float8x8 mb[2];
|
|
|
|
simdgroup_float8x8 c_res[8];
|
|
|
|
for (int i = 0; i < 8; i++){
|
|
|
|
c_res[i] = make_filled_simdgroup_matrix<float, 8>(0.f);
|
|
|
|
}
|
|
|
|
short il = (tiitg % THREAD_PER_ROW);
|
|
|
|
|
|
|
|
ushort offset1 = il/nl;
|
|
|
|
|
2024-04-18 15:18:48 +02:00
|
|
|
threadgroup const auto & id = rowids[r1 * BLOCK_SIZE_N + thread_col];
|
|
|
|
|
|
|
|
device const block_q * x = (device const block_q *)(src0 + (r0 * BLOCK_SIZE_M + thread_row) * nb01) + offset1;
|
2024-01-02 20:07:47 +01:00
|
|
|
device const float * y = (device const float *)(src1
|
2024-04-18 15:18:48 +02:00
|
|
|
+ nb12 * id[1]
|
|
|
|
+ nb11 * (id[0] % ne11)
|
2024-01-02 20:07:47 +01:00
|
|
|
+ nb10 * (BLOCK_SIZE_K / THREAD_PER_COL * (tiitg % THREAD_PER_COL)));
|
|
|
|
|
|
|
|
for (int loop_k = 0; loop_k < ne00; loop_k += BLOCK_SIZE_K) {
|
|
|
|
// load data and store to threadgroup memory
|
|
|
|
half4x4 temp_a;
|
|
|
|
dequantize_func(x, il, temp_a);
|
|
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
|
|
|
|
|
|
for (int i = 0; i < 16; i++) {
|
|
|
|
*(sa + SG_MAT_SIZE * ((tiitg / THREAD_PER_ROW / 8) \
|
|
|
|
+ (tiitg % THREAD_PER_ROW) * 16 + (i / 8) * 8) \
|
|
|
|
+ (tiitg / THREAD_PER_ROW) % 8 + (i & 7) * 8) = temp_a[i/4][i%4];
|
|
|
|
}
|
|
|
|
|
|
|
|
*(threadgroup float2x4 *)(sb + (tiitg % THREAD_PER_COL) * 8 * 32 + 8 * (tiitg / THREAD_PER_COL)) = *((device float2x4 *)y);
|
|
|
|
|
|
|
|
il = (il + 2 < nl) ? il + 2 : il % 2;
|
|
|
|
x = (il < 2) ? x + (2+nl-1)/nl : x;
|
|
|
|
y += BLOCK_SIZE_K;
|
|
|
|
|
|
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
|
|
|
|
|
|
// load matrices from threadgroup memory and conduct outer products
|
|
|
|
threadgroup half * lsma = (sa + THREAD_MAT_M * SG_MAT_SIZE * (sgitg % 2));
|
|
|
|
threadgroup float * lsmb = (sb + THREAD_MAT_N * SG_MAT_SIZE * (sgitg / 2));
|
|
|
|
|
|
|
|
for (int ik = 0; ik < BLOCK_SIZE_K / 8; ik++) {
|
|
|
|
for (int i = 0; i < 4; i++) {
|
2024-04-18 15:18:48 +02:00
|
|
|
simdgroup_load(ma[i], lsma + SG_MAT_SIZE * i);
|
2024-01-02 20:07:47 +01:00
|
|
|
}
|
|
|
|
simdgroup_barrier(mem_flags::mem_none);
|
|
|
|
for (int i = 0; i < 2; i++) {
|
2024-04-18 15:18:48 +02:00
|
|
|
simdgroup_load(mb[i], lsmb + SG_MAT_SIZE * i);
|
2024-01-02 20:07:47 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
lsma += BLOCK_SIZE_M / SG_MAT_ROW * SG_MAT_SIZE;
|
|
|
|
lsmb += BLOCK_SIZE_N / SG_MAT_ROW * SG_MAT_SIZE;
|
|
|
|
|
|
|
|
for (int i = 0; i < 8; i++){
|
|
|
|
simdgroup_multiply_accumulate(c_res[i], mb[i/4], ma[i%4], c_res[i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
{
|
|
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
|
|
threadgroup float * temp_str = ((threadgroup float *)shared_memory) \
|
|
|
|
+ 32 * (sgitg&1) + (16 * (sgitg>>1)) * BLOCK_SIZE_M;
|
|
|
|
for (int i = 0; i < 8; i++) {
|
|
|
|
simdgroup_store(c_res[i], temp_str + 8 * (i%4) + 8 * BLOCK_SIZE_M * (i/4), BLOCK_SIZE_M);
|
|
|
|
}
|
|
|
|
|
|
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
|
|
|
2024-04-18 15:18:48 +02:00
|
|
|
device float * C = dst + (BLOCK_SIZE_M * r0);
|
2024-01-02 20:07:47 +01:00
|
|
|
if (sgitg == 0) {
|
2024-04-18 15:18:48 +02:00
|
|
|
for (int j = tiitg; j < n_cols; j += BLOCK_SIZE_N) {
|
|
|
|
threadgroup const auto & jid = rowids[r1 * BLOCK_SIZE_N + j];
|
|
|
|
int joff = jid[0] * ne0 + jid[1] * ne0ne1;
|
|
|
|
for (int i = 0; i < n_rows; i++) {
|
|
|
|
*(C + i + joff) = *(temp_str + i + j * BLOCK_SIZE_M);
|
2024-01-02 20:07:47 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread half4x4 &)>
|
|
|
|
kernel void kernel_mul_mm_id(
|
2024-04-03 15:07:05 +02:00
|
|
|
device const uchar * src0s,
|
2023-12-07 21:26:54 +01:00
|
|
|
device const uchar * src1,
|
2024-01-02 20:07:47 +01:00
|
|
|
device float * dst,
|
2024-04-03 15:07:05 +02:00
|
|
|
device const uchar * ids,
|
2024-04-18 15:18:48 +02:00
|
|
|
constant int64_t & nei0,
|
|
|
|
constant int64_t & nei1,
|
2024-01-02 09:57:44 +01:00
|
|
|
constant uint64_t & nbi1,
|
2023-12-07 21:26:54 +01:00
|
|
|
constant int64_t & ne00,
|
|
|
|
constant int64_t & ne02,
|
2024-01-02 09:57:44 +01:00
|
|
|
constant uint64_t & nb01,
|
|
|
|
constant uint64_t & nb02,
|
2024-04-18 15:18:48 +02:00
|
|
|
constant int64_t & ne11,
|
2023-12-07 21:26:54 +01:00
|
|
|
constant int64_t & ne12,
|
2023-12-13 13:04:25 +01:00
|
|
|
constant int64_t & ne13,
|
2024-01-02 09:57:44 +01:00
|
|
|
constant uint64_t & nb10,
|
|
|
|
constant uint64_t & nb11,
|
|
|
|
constant uint64_t & nb12,
|
2023-12-07 21:26:54 +01:00
|
|
|
constant int64_t & ne0,
|
|
|
|
constant int64_t & ne1,
|
2024-01-02 09:57:44 +01:00
|
|
|
constant uint64_t & nb1,
|
2023-12-07 21:26:54 +01:00
|
|
|
threadgroup uchar * shared_memory [[threadgroup(0)]],
|
|
|
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
|
|
|
uint tiitg[[thread_index_in_threadgroup]],
|
|
|
|
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
|
|
|
|
2024-04-18 15:18:48 +02:00
|
|
|
const int32_t i02 = tgpig.z;
|
|
|
|
tgpig.z = 0;
|
2023-12-13 13:04:25 +01:00
|
|
|
|
2024-04-18 15:18:48 +02:00
|
|
|
device const uchar * src0 = src0s + i02*nb02;
|
2023-12-13 13:04:25 +01:00
|
|
|
|
2024-04-18 15:18:48 +02:00
|
|
|
// row indices
|
|
|
|
threadgroup ushort2 * rowids = (threadgroup ushort2 *)(shared_memory + 8192);
|
2023-12-13 13:04:25 +01:00
|
|
|
|
2024-04-18 15:18:48 +02:00
|
|
|
// TODO: parallelize this loop
|
2024-03-10 22:12:48 +01:00
|
|
|
int64_t _ne1 = 0;
|
2024-04-18 15:18:48 +02:00
|
|
|
for (ushort ii1 = 0; ii1 < nei1; ii1++) {
|
|
|
|
for (ushort ii0 = 0; ii0 < nei0; ii0++) {
|
|
|
|
int32_t id = ((device int32_t *) (ids + ii1*nbi1))[ii0];
|
|
|
|
if (id == i02) {
|
|
|
|
//if (tiitg == 0) {
|
|
|
|
rowids[_ne1] = ushort2(ii0, ii1);
|
|
|
|
//}
|
|
|
|
_ne1++;
|
|
|
|
}
|
2024-01-02 20:07:47 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2024-04-18 15:18:48 +02:00
|
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
|
|
|
2024-01-02 20:07:47 +01:00
|
|
|
kernel_mul_mm_id_impl<block_q, nl, dequantize_func>(
|
2024-04-03 15:07:05 +02:00
|
|
|
src0,
|
2024-01-02 20:07:47 +01:00
|
|
|
src1,
|
2024-04-18 15:18:48 +02:00
|
|
|
rowids,
|
2024-01-02 20:07:47 +01:00
|
|
|
dst,
|
2023-12-07 21:26:54 +01:00
|
|
|
ne00,
|
|
|
|
ne02,
|
|
|
|
nb01,
|
|
|
|
nb02,
|
2024-04-18 15:18:48 +02:00
|
|
|
ne11,
|
2023-12-07 21:26:54 +01:00
|
|
|
ne12,
|
|
|
|
nb10,
|
|
|
|
nb11,
|
|
|
|
nb12,
|
|
|
|
ne0,
|
2024-01-02 20:07:47 +01:00
|
|
|
_ne1,
|
2024-04-18 15:18:48 +02:00
|
|
|
ne0*ne1,
|
2023-12-07 21:26:54 +01:00
|
|
|
shared_memory,
|
|
|
|
tgpig,
|
|
|
|
tiitg,
|
|
|
|
sgitg);
|
|
|
|
}
|
|
|
|
|
2023-08-16 22:07:04 +02:00
|
|
|
#define QK_NL 16
|
|
|
|
|
2023-12-13 13:04:25 +01:00
|
|
|
//
|
|
|
|
// get rows
|
|
|
|
//
|
|
|
|
|
2024-07-13 17:32:33 +02:00
|
|
|
typedef decltype(kernel_get_rows_f<float>) get_rows_f_t;
|
|
|
|
|
|
|
|
template [[host_name("kernel_get_rows_f32")]] kernel get_rows_f_t kernel_get_rows_f<float>;
|
|
|
|
template [[host_name("kernel_get_rows_f16")]] kernel get_rows_f_t kernel_get_rows_f<half>;
|
2024-11-08 20:59:46 +01:00
|
|
|
#if defined(GGML_METAL_USE_BF16)
|
2024-11-06 18:53:51 +01:00
|
|
|
template [[host_name("kernel_get_rows_bf16")]] kernel get_rows_f_t kernel_get_rows_f<bfloat>;
|
|
|
|
#endif
|
2024-07-13 17:32:33 +02:00
|
|
|
|
|
|
|
typedef decltype(kernel_get_rows_q<block_q4_0, 2, dequantize_q4_0>) get_rows_q_t;
|
|
|
|
|
|
|
|
template [[host_name("kernel_get_rows_q4_0")]] kernel get_rows_q_t kernel_get_rows_q<block_q4_0, 2, dequantize_q4_0>;
|
|
|
|
template [[host_name("kernel_get_rows_q4_1")]] kernel get_rows_q_t kernel_get_rows_q<block_q4_1, 2, dequantize_q4_1>;
|
|
|
|
template [[host_name("kernel_get_rows_q5_0")]] kernel get_rows_q_t kernel_get_rows_q<block_q5_0, 2, dequantize_q5_0>;
|
|
|
|
template [[host_name("kernel_get_rows_q5_1")]] kernel get_rows_q_t kernel_get_rows_q<block_q5_1, 2, dequantize_q5_1>;
|
|
|
|
template [[host_name("kernel_get_rows_q8_0")]] kernel get_rows_q_t kernel_get_rows_q<block_q8_0, 2, dequantize_q8_0>;
|
|
|
|
template [[host_name("kernel_get_rows_q2_K")]] kernel get_rows_q_t kernel_get_rows_q<block_q2_K, QK_NL, dequantize_q2_K>;
|
|
|
|
template [[host_name("kernel_get_rows_q3_K")]] kernel get_rows_q_t kernel_get_rows_q<block_q3_K, QK_NL, dequantize_q3_K>;
|
|
|
|
template [[host_name("kernel_get_rows_q4_K")]] kernel get_rows_q_t kernel_get_rows_q<block_q4_K, QK_NL, dequantize_q4_K>;
|
|
|
|
template [[host_name("kernel_get_rows_q5_K")]] kernel get_rows_q_t kernel_get_rows_q<block_q5_K, QK_NL, dequantize_q5_K>;
|
|
|
|
template [[host_name("kernel_get_rows_q6_K")]] kernel get_rows_q_t kernel_get_rows_q<block_q6_K, QK_NL, dequantize_q6_K>;
|
|
|
|
template [[host_name("kernel_get_rows_iq2_xxs")]] kernel get_rows_q_t kernel_get_rows_q<block_iq2_xxs, QK_NL, dequantize_iq2_xxs>;
|
|
|
|
template [[host_name("kernel_get_rows_iq2_xs")]] kernel get_rows_q_t kernel_get_rows_q<block_iq2_xs, QK_NL, dequantize_iq2_xs>;
|
|
|
|
template [[host_name("kernel_get_rows_iq3_xxs")]] kernel get_rows_q_t kernel_get_rows_q<block_iq3_xxs, QK_NL, dequantize_iq3_xxs>;
|
|
|
|
template [[host_name("kernel_get_rows_iq3_s")]] kernel get_rows_q_t kernel_get_rows_q<block_iq3_s, QK_NL, dequantize_iq3_s>;
|
|
|
|
template [[host_name("kernel_get_rows_iq2_s")]] kernel get_rows_q_t kernel_get_rows_q<block_iq2_s, QK_NL, dequantize_iq2_s>;
|
|
|
|
template [[host_name("kernel_get_rows_iq1_s")]] kernel get_rows_q_t kernel_get_rows_q<block_iq1_s, QK_NL, dequantize_iq1_s>;
|
|
|
|
template [[host_name("kernel_get_rows_iq1_m")]] kernel get_rows_q_t kernel_get_rows_q<block_iq1_m, QK_NL, dequantize_iq1_m>;
|
|
|
|
template [[host_name("kernel_get_rows_iq4_nl")]] kernel get_rows_q_t kernel_get_rows_q<block_iq4_nl, 2, dequantize_iq4_nl>;
|
|
|
|
template [[host_name("kernel_get_rows_iq4_xs")]] kernel get_rows_q_t kernel_get_rows_q<block_iq4_xs, QK_NL, dequantize_iq4_xs>;
|
2023-08-16 22:07:04 +02:00
|
|
|
|
2023-12-13 13:04:25 +01:00
|
|
|
//
|
|
|
|
// matrix-matrix multiplication
|
|
|
|
//
|
|
|
|
|
2024-07-13 17:32:33 +02:00
|
|
|
typedef decltype(kernel_mul_mm<half, half4x4, simdgroup_half8x8, float4x4, 1, dequantize_f32>) mat_mm_t;
|
|
|
|
|
|
|
|
template [[host_name("kernel_mul_mm_f32_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, float4x4, 1, dequantize_f32>;
|
|
|
|
template [[host_name("kernel_mul_mm_f16_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, half4x4, 1, dequantize_f16>;
|
2024-11-08 20:59:46 +01:00
|
|
|
#if defined(GGML_METAL_USE_BF16)
|
2024-11-06 18:53:51 +01:00
|
|
|
template [[host_name("kernel_mul_mm_bf16_f32")]] kernel mat_mm_t kernel_mul_mm<bfloat, bfloat4x4, simdgroup_bfloat8x8, bfloat4x4, 1, dequantize_bf16>;
|
|
|
|
#endif
|
2024-07-13 17:32:33 +02:00
|
|
|
template [[host_name("kernel_mul_mm_q4_0_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q4_0, 2, dequantize_q4_0>;
|
|
|
|
template [[host_name("kernel_mul_mm_q4_1_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q4_1, 2, dequantize_q4_1>;
|
|
|
|
template [[host_name("kernel_mul_mm_q5_0_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q5_0, 2, dequantize_q5_0>;
|
|
|
|
template [[host_name("kernel_mul_mm_q5_1_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q5_1, 2, dequantize_q5_1>;
|
|
|
|
template [[host_name("kernel_mul_mm_q8_0_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q8_0, 2, dequantize_q8_0>;
|
|
|
|
template [[host_name("kernel_mul_mm_q2_K_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q2_K, QK_NL, dequantize_q2_K>;
|
|
|
|
template [[host_name("kernel_mul_mm_q3_K_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q3_K, QK_NL, dequantize_q3_K>;
|
|
|
|
template [[host_name("kernel_mul_mm_q4_K_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q4_K, QK_NL, dequantize_q4_K>;
|
|
|
|
template [[host_name("kernel_mul_mm_q5_K_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q5_K, QK_NL, dequantize_q5_K>;
|
|
|
|
template [[host_name("kernel_mul_mm_q6_K_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q6_K, QK_NL, dequantize_q6_K>;
|
|
|
|
template [[host_name("kernel_mul_mm_iq2_xxs_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_iq2_xxs, QK_NL, dequantize_iq2_xxs>;
|
|
|
|
template [[host_name("kernel_mul_mm_iq2_xs_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_iq2_xs, QK_NL, dequantize_iq2_xs>;
|
|
|
|
template [[host_name("kernel_mul_mm_iq3_xxs_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_iq3_xxs, QK_NL, dequantize_iq3_xxs>;
|
|
|
|
template [[host_name("kernel_mul_mm_iq3_s_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_iq3_s, QK_NL, dequantize_iq3_s>;
|
|
|
|
template [[host_name("kernel_mul_mm_iq2_s_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_iq2_s, QK_NL, dequantize_iq2_s>;
|
|
|
|
template [[host_name("kernel_mul_mm_iq1_s_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_iq1_s, QK_NL, dequantize_iq1_s>;
|
|
|
|
template [[host_name("kernel_mul_mm_iq1_m_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_iq1_m, QK_NL, dequantize_iq1_m>;
|
|
|
|
template [[host_name("kernel_mul_mm_iq4_nl_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_iq4_nl, 2, dequantize_iq4_nl>;
|
|
|
|
template [[host_name("kernel_mul_mm_iq4_xs_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_iq4_xs, QK_NL, dequantize_iq4_xs>;
|
2023-12-07 21:26:54 +01:00
|
|
|
|
2023-12-13 13:04:25 +01:00
|
|
|
//
|
|
|
|
// indirect matrix-matrix multiplication
|
|
|
|
//
|
|
|
|
|
2024-04-18 15:18:48 +02:00
|
|
|
typedef decltype(kernel_mul_mm_id<float4x4, 1, dequantize_f32>) mat_mm_id_t;
|
2023-12-07 21:26:54 +01:00
|
|
|
|
2024-03-22 10:35:53 +01:00
|
|
|
template [[host_name("kernel_mul_mm_id_f32_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<float4x4, 1, dequantize_f32>;
|
|
|
|
template [[host_name("kernel_mul_mm_id_f16_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<half4x4, 1, dequantize_f16>;
|
2024-11-08 20:59:46 +01:00
|
|
|
#if defined(GGML_METAL_USE_BF16)
|
2024-11-06 18:53:51 +01:00
|
|
|
template [[host_name("kernel_mul_mm_id_bf16_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<bfloat4x4, 1, dequantize_bf16>;
|
|
|
|
#endif
|
2024-03-22 10:35:53 +01:00
|
|
|
template [[host_name("kernel_mul_mm_id_q4_0_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q4_0, 2, dequantize_q4_0>;
|
|
|
|
template [[host_name("kernel_mul_mm_id_q4_1_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q4_1, 2, dequantize_q4_1>;
|
|
|
|
template [[host_name("kernel_mul_mm_id_q5_0_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q5_0, 2, dequantize_q5_0>;
|
|
|
|
template [[host_name("kernel_mul_mm_id_q5_1_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q5_1, 2, dequantize_q5_1>;
|
|
|
|
template [[host_name("kernel_mul_mm_id_q8_0_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q8_0, 2, dequantize_q8_0>;
|
|
|
|
template [[host_name("kernel_mul_mm_id_q2_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q2_K, QK_NL, dequantize_q2_K>;
|
|
|
|
template [[host_name("kernel_mul_mm_id_q3_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q3_K, QK_NL, dequantize_q3_K>;
|
|
|
|
template [[host_name("kernel_mul_mm_id_q4_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q4_K, QK_NL, dequantize_q4_K>;
|
|
|
|
template [[host_name("kernel_mul_mm_id_q5_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q5_K, QK_NL, dequantize_q5_K>;
|
|
|
|
template [[host_name("kernel_mul_mm_id_q6_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q6_K, QK_NL, dequantize_q6_K>;
|
2024-01-08 16:02:32 +01:00
|
|
|
template [[host_name("kernel_mul_mm_id_iq2_xxs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq2_xxs, QK_NL, dequantize_iq2_xxs>;
|
2024-01-11 20:39:39 +01:00
|
|
|
template [[host_name("kernel_mul_mm_id_iq2_xs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq2_xs, QK_NL, dequantize_iq2_xs>;
|
2024-01-30 14:14:12 +01:00
|
|
|
template [[host_name("kernel_mul_mm_id_iq3_xxs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq3_xxs, QK_NL, dequantize_iq3_xxs>;
|
2024-02-24 15:23:52 +01:00
|
|
|
template [[host_name("kernel_mul_mm_id_iq3_s_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq3_s, QK_NL, dequantize_iq3_s>;
|
2024-02-26 17:28:38 +01:00
|
|
|
template [[host_name("kernel_mul_mm_id_iq2_s_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq2_s, QK_NL, dequantize_iq2_s>;
|
2024-02-18 17:16:55 +01:00
|
|
|
template [[host_name("kernel_mul_mm_id_iq1_s_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq1_s, QK_NL, dequantize_iq1_s>;
|
2024-03-26 15:21:27 +01:00
|
|
|
template [[host_name("kernel_mul_mm_id_iq1_m_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq1_m, QK_NL, dequantize_iq1_m>;
|
2024-02-27 15:34:24 +01:00
|
|
|
template [[host_name("kernel_mul_mm_id_iq4_nl_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq4_nl, 2, dequantize_iq4_nl>;
|
|
|
|
template [[host_name("kernel_mul_mm_id_iq4_xs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq4_xs, QK_NL, dequantize_iq4_xs>;
|
2023-12-13 13:04:25 +01:00
|
|
|
|
|
|
|
//
|
|
|
|
// matrix-vector multiplication
|
|
|
|
//
|
|
|
|
|
2024-04-12 18:13:20 +02:00
|
|
|
typedef void (kernel_mul_mv_impl_t)(
|
|
|
|
device const char * src0,
|
|
|
|
device const char * src1,
|
|
|
|
device float * dst,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne00,
|
|
|
|
int64_t ne01,
|
|
|
|
int64_t ne02,
|
|
|
|
uint64_t nb00,
|
|
|
|
uint64_t nb01,
|
|
|
|
uint64_t nb02,
|
2024-10-25 21:26:15 +02:00
|
|
|
uint64_t nb03,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne10,
|
|
|
|
int64_t ne11,
|
|
|
|
int64_t ne12,
|
|
|
|
uint64_t nb10,
|
|
|
|
uint64_t nb11,
|
|
|
|
uint64_t nb12,
|
2024-10-25 21:26:15 +02:00
|
|
|
uint64_t nb13,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne0,
|
|
|
|
int64_t ne1,
|
|
|
|
uint r2,
|
|
|
|
uint r3,
|
|
|
|
uint3 tgpig,
|
|
|
|
uint tiisg);
|
2023-12-13 13:04:25 +01:00
|
|
|
|
2024-04-12 18:13:20 +02:00
|
|
|
typedef void (kernel_mul_mv2_impl_t)(
|
|
|
|
device const void * src0,
|
|
|
|
device const float * src1,
|
|
|
|
device float * dst,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne00,
|
|
|
|
int64_t ne01,
|
|
|
|
int64_t ne02,
|
2024-10-25 21:26:15 +02:00
|
|
|
uint64_t nb01,
|
|
|
|
uint64_t nb02,
|
|
|
|
uint64_t nb03,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne10,
|
|
|
|
int64_t ne12,
|
2024-10-25 21:26:15 +02:00
|
|
|
uint64_t nb11,
|
|
|
|
uint64_t nb12,
|
|
|
|
uint64_t nb13,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne0,
|
|
|
|
int64_t ne1,
|
|
|
|
uint r2,
|
|
|
|
uint r3,
|
|
|
|
threadgroup int8_t * shared_values,
|
|
|
|
uint3 tgpig,
|
|
|
|
uint tiisg,
|
|
|
|
uint sgitg);
|
2023-12-13 13:04:25 +01:00
|
|
|
|
2024-04-12 18:13:20 +02:00
|
|
|
template<kernel_mul_mv_impl_t impl_fn>
|
|
|
|
void mmv_fn(
|
|
|
|
device const char * src0,
|
2023-12-13 13:04:25 +01:00
|
|
|
device const char * src1,
|
2024-01-02 20:07:47 +01:00
|
|
|
device float * dst,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne00,
|
|
|
|
int64_t ne01,
|
|
|
|
int64_t ne02,
|
|
|
|
uint64_t nb00,
|
|
|
|
uint64_t nb01,
|
|
|
|
uint64_t nb02,
|
2024-10-25 21:26:15 +02:00
|
|
|
uint64_t nb03,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne10,
|
|
|
|
int64_t ne11,
|
|
|
|
int64_t ne12,
|
|
|
|
int64_t ne13,
|
|
|
|
uint64_t nb10,
|
|
|
|
uint64_t nb11,
|
|
|
|
uint64_t nb12,
|
2024-10-25 21:26:15 +02:00
|
|
|
uint64_t nb13,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne0,
|
|
|
|
int64_t ne1,
|
|
|
|
uint64_t nb1,
|
|
|
|
uint r2,
|
|
|
|
uint r3,
|
|
|
|
threadgroup int8_t * shared_values,
|
|
|
|
uint3 tgpig,
|
|
|
|
uint tiitg,
|
|
|
|
uint tiisg,
|
|
|
|
uint sgitg) {
|
2024-10-25 21:26:15 +02:00
|
|
|
impl_fn(src0,src1,dst,ne00,ne01,ne02,nb00,nb01,nb02,nb03,ne10,ne11,ne12,nb10,nb11,nb12,nb13,ne0,ne1,r2,r3,tgpig,tiisg);
|
2023-12-13 13:04:25 +01:00
|
|
|
}
|
|
|
|
|
2024-04-12 18:13:20 +02:00
|
|
|
template<kernel_mul_mv2_impl_t impl_fn>
|
|
|
|
void mmv_fn(
|
|
|
|
device const char * src0,
|
2023-12-13 13:04:25 +01:00
|
|
|
device const char * src1,
|
2024-01-02 20:07:47 +01:00
|
|
|
device float * dst,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne00,
|
|
|
|
int64_t ne01,
|
|
|
|
int64_t ne02,
|
|
|
|
uint64_t nb00,
|
|
|
|
uint64_t nb01,
|
|
|
|
uint64_t nb02,
|
2024-10-25 21:26:15 +02:00
|
|
|
uint64_t nb03,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne10,
|
|
|
|
int64_t ne11,
|
|
|
|
int64_t ne12,
|
|
|
|
int64_t ne13,
|
|
|
|
uint64_t nb10,
|
|
|
|
uint64_t nb11,
|
|
|
|
uint64_t nb12,
|
2024-10-25 21:26:15 +02:00
|
|
|
uint64_t nb13,
|
2024-04-18 15:18:48 +02:00
|
|
|
int64_t ne0,
|
|
|
|
int64_t ne1,
|
|
|
|
uint64_t nb1,
|
|
|
|
uint r2,
|
|
|
|
uint r3,
|
|
|
|
threadgroup int8_t * shared_values,
|
|
|
|
uint3 tgpig,
|
|
|
|
uint tiitg,
|
|
|
|
uint tiisg,
|
|
|
|
uint sgitg) {
|
2024-10-25 21:26:15 +02:00
|
|
|
impl_fn(src0,(const device float *)src1,dst,ne00,ne01,ne02,nb01,nb02,nb03,ne10,ne12,nb11,nb12,nb13,ne0,ne1,r2,r3,shared_values,tgpig,tiisg,sgitg);
|
2023-12-13 13:04:25 +01:00
|
|
|
}
|
|
|
|
|
2024-07-13 17:32:33 +02:00
|
|
|
typedef decltype(mmv_fn<kernel_mul_mv_impl<half, half4, half, half4>>) mul_mv_impl_fn_t;
|
2023-12-13 13:04:25 +01:00
|
|
|
|
2024-04-12 18:13:20 +02:00
|
|
|
template<mul_mv_impl_fn_t impl_fn>
|
|
|
|
kernel void kernel_mul_mv_id(
|
2024-04-03 15:07:05 +02:00
|
|
|
device const char * src0s,
|
2023-12-13 13:04:25 +01:00
|
|
|
device const char * src1,
|
2024-01-02 20:07:47 +01:00
|
|
|
device float * dst,
|
2024-04-03 15:07:05 +02:00
|
|
|
device const char * ids,
|
2024-04-18 15:18:48 +02:00
|
|
|
constant int64_t & nei0,
|
|
|
|
constant int64_t & nei1,
|
2024-01-02 09:57:44 +01:00
|
|
|
constant uint64_t & nbi1,
|
2023-12-13 13:04:25 +01:00
|
|
|
constant int64_t & ne00,
|
|
|
|
constant int64_t & ne01,
|
|
|
|
constant int64_t & ne02,
|
|
|
|
constant uint64_t & nb00,
|
|
|
|
constant uint64_t & nb01,
|
|
|
|
constant uint64_t & nb02,
|
|
|
|
constant int64_t & ne10,
|
|
|
|
constant int64_t & ne11,
|
|
|
|
constant int64_t & ne12,
|
|
|
|
constant int64_t & ne13,
|
|
|
|
constant uint64_t & nb10,
|
|
|
|
constant uint64_t & nb11,
|
|
|
|
constant uint64_t & nb12,
|
|
|
|
constant int64_t & ne0,
|
|
|
|
constant int64_t & ne1,
|
2024-01-02 09:57:44 +01:00
|
|
|
constant uint64_t & nb1,
|
2024-04-12 18:13:20 +02:00
|
|
|
threadgroup int8_t * shared_values [[threadgroup(0)]],
|
2023-12-13 13:04:25 +01:00
|
|
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
|
|
|
uint tiitg[[thread_index_in_threadgroup]],
|
|
|
|
uint tiisg[[thread_index_in_simdgroup]],
|
|
|
|
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
2024-04-18 15:18:48 +02:00
|
|
|
const int iid1 = tgpig.z/nei0;
|
|
|
|
const int idx = tgpig.z%nei0;
|
|
|
|
|
|
|
|
tgpig.z = 0;
|
2023-12-13 13:04:25 +01:00
|
|
|
|
2024-04-18 15:18:48 +02:00
|
|
|
const int32_t i02 = ((device const int32_t *) (ids + iid1*nbi1))[idx];
|
2023-12-13 13:04:25 +01:00
|
|
|
|
2024-04-18 15:18:48 +02:00
|
|
|
const int64_t i11 = idx % ne11;
|
|
|
|
const int64_t i12 = iid1;
|
|
|
|
|
|
|
|
const int64_t i1 = idx;
|
|
|
|
const int64_t i2 = i12;
|
|
|
|
|
|
|
|
device const char * src0_cur = src0s + i02*nb02;
|
2024-10-25 21:26:15 +02:00
|
|
|
device const char * src1_cur = src1 + i11*nb11 + i12*nb12;
|
|
|
|
device float * dst_cur = dst + i1*ne0 + i2*ne1*ne0;
|
2023-12-13 13:04:25 +01:00
|
|
|
|
2024-04-12 18:13:20 +02:00
|
|
|
impl_fn(
|
2024-04-18 15:18:48 +02:00
|
|
|
/* src0 */ src0_cur,
|
|
|
|
/* src1 */ src1_cur,
|
|
|
|
/* dst */ dst_cur,
|
|
|
|
/* ne00 */ ne00,
|
|
|
|
/* ne01 */ ne01,
|
2024-10-25 21:26:15 +02:00
|
|
|
/* ne02 */ 1, // ne02,
|
2024-04-18 15:18:48 +02:00
|
|
|
/* nb00 */ nb00,
|
|
|
|
/* nb01 */ nb01,
|
|
|
|
/* nb02 */ nb02,
|
2024-10-25 21:26:15 +02:00
|
|
|
/* nb03 */ nb02, // ne02 == 1
|
2024-04-18 15:18:48 +02:00
|
|
|
/* ne10 */ ne10,
|
2024-10-25 21:26:15 +02:00
|
|
|
/* ne11 */ 1, // ne11,
|
|
|
|
/* ne12 */ 1, // ne12,
|
|
|
|
/* ne13 */ 1, // ne13,
|
2024-04-18 15:18:48 +02:00
|
|
|
/* nb10 */ nb10,
|
|
|
|
/* nb11 */ nb11,
|
|
|
|
/* nb12 */ nb12,
|
2024-10-25 21:26:15 +02:00
|
|
|
/* ne13 */ nb12, // ne12 == 1
|
2024-04-18 15:18:48 +02:00
|
|
|
/* ne0 */ ne0,
|
2024-10-25 21:26:15 +02:00
|
|
|
/* ne1 */ 1, // ne1,
|
2024-04-18 15:18:48 +02:00
|
|
|
/* nb1 */ nb1,
|
|
|
|
/* r2 */ 1,
|
|
|
|
/* r3 */ 1,
|
2024-04-12 18:13:20 +02:00
|
|
|
shared_values,
|
2023-12-13 13:04:25 +01:00
|
|
|
tgpig,
|
2024-04-12 18:13:20 +02:00
|
|
|
tiitg,
|
2023-12-13 13:04:25 +01:00
|
|
|
tiisg,
|
|
|
|
sgitg);
|
|
|
|
}
|
|
|
|
|
2024-07-13 17:32:33 +02:00
|
|
|
typedef decltype(kernel_mul_mv_id<mmv_fn<kernel_mul_mv_impl<float, float4, float, float4>>>) kernel_mul_mv_id_t;
|
|
|
|
|
|
|
|
template [[host_name("kernel_mul_mv_id_f32_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_impl<float, float4, float, float4>>>;
|
|
|
|
template [[host_name("kernel_mul_mv_id_f16_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_impl<half, half4, float, float4>>>;
|
2024-11-08 20:59:46 +01:00
|
|
|
#if defined(GGML_METAL_USE_BF16)
|
2024-11-06 18:53:51 +01:00
|
|
|
template [[host_name("kernel_mul_mv_id_bf16_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_impl<bfloat, bfloat4, float, float4>>>;
|
|
|
|
#endif
|
2024-07-13 17:32:33 +02:00
|
|
|
template [[host_name("kernel_mul_mv_id_q8_0_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_q8_0_f32_impl>>;
|
|
|
|
template [[host_name("kernel_mul_mv_id_q4_0_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<mul_vec_q_n_f32_impl<block_q4_0, N_DST, N_SIMDGROUP, N_SIMDWIDTH>>>;
|
|
|
|
template [[host_name("kernel_mul_mv_id_q4_1_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<mul_vec_q_n_f32_impl<block_q4_1, N_DST, N_SIMDGROUP, N_SIMDWIDTH>>>;
|
|
|
|
template [[host_name("kernel_mul_mv_id_q5_0_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<mul_vec_q_n_f32_impl<block_q5_0, N_DST, N_SIMDGROUP, N_SIMDWIDTH>>>;
|
|
|
|
template [[host_name("kernel_mul_mv_id_q5_1_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<mul_vec_q_n_f32_impl<block_q5_1, N_DST, N_SIMDGROUP, N_SIMDWIDTH>>>;
|
|
|
|
template [[host_name("kernel_mul_mv_id_q2_K_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_q2_K_f32_impl>>;
|
|
|
|
template [[host_name("kernel_mul_mv_id_q3_K_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_q3_K_f32_impl>>;
|
|
|
|
template [[host_name("kernel_mul_mv_id_q4_K_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_q4_K_f32_impl>>;
|
|
|
|
template [[host_name("kernel_mul_mv_id_q5_K_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_q5_K_f32_impl>>;
|
|
|
|
template [[host_name("kernel_mul_mv_id_q6_K_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_q6_K_f32_impl>>;
|
2024-04-12 18:13:20 +02:00
|
|
|
template [[host_name("kernel_mul_mv_id_iq1_s_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq1_s_f32_impl>>;
|
|
|
|
template [[host_name("kernel_mul_mv_id_iq1_m_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq1_m_f32_impl>>;
|
|
|
|
template [[host_name("kernel_mul_mv_id_iq2_xxs_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq2_xxs_f32_impl>>;
|
|
|
|
template [[host_name("kernel_mul_mv_id_iq2_xs_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq2_xs_f32_impl>>;
|
|
|
|
template [[host_name("kernel_mul_mv_id_iq3_xxs_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq3_xxs_f32_impl>>;
|
|
|
|
template [[host_name("kernel_mul_mv_id_iq3_s_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq3_s_f32_impl>>;
|
|
|
|
template [[host_name("kernel_mul_mv_id_iq2_s_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq2_s_f32_impl>>;
|
|
|
|
template [[host_name("kernel_mul_mv_id_iq4_nl_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq4_nl_f32_impl>>;
|
|
|
|
template [[host_name("kernel_mul_mv_id_iq4_xs_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq4_xs_f32_impl>>;
|
2024-10-23 12:33:45 +02:00
|
|
|
|
|
|
|
kernel void kernel_pool_2d_max_f32(
|
|
|
|
device const float * src0,
|
|
|
|
device float * dst,
|
|
|
|
constant int32_t & k0,
|
|
|
|
constant int32_t & k1,
|
|
|
|
constant int32_t & s0,
|
|
|
|
constant int32_t & s1,
|
|
|
|
constant int32_t & p0,
|
|
|
|
constant int32_t & p1,
|
|
|
|
constant int64_t & IH,
|
|
|
|
constant int64_t & IW,
|
|
|
|
constant int64_t & OH,
|
|
|
|
constant int64_t & OW,
|
|
|
|
constant int64_t & parallel_elements,
|
|
|
|
uint gid[[thread_position_in_grid]]) {
|
|
|
|
|
|
|
|
if (gid >= parallel_elements) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
const int idx = gid;
|
|
|
|
const int I_HW = IH * IW;
|
|
|
|
const int O_HW = OH * OW;
|
|
|
|
const int nc = idx / O_HW;
|
|
|
|
const int cur_oh = idx % O_HW / OW;
|
|
|
|
const int cur_ow = idx % O_HW % OW;
|
|
|
|
|
|
|
|
device const float * i_ptr = src0 + nc * I_HW;
|
|
|
|
device float * o_ptr = dst + nc * O_HW;
|
|
|
|
|
|
|
|
const int start_h = cur_oh * s1 - p1;
|
|
|
|
const int bh = MAX(0, start_h);
|
|
|
|
const int eh = MIN(IH, start_h + k1);
|
|
|
|
const int start_w = cur_ow * s0 - p0;
|
|
|
|
const int bw = MAX(0, start_w);
|
|
|
|
const int ew = MIN(IW, start_w + k0);
|
|
|
|
|
|
|
|
float res = -INFINITY;
|
|
|
|
|
|
|
|
for (int i = bh; i < eh; i += 1) {
|
|
|
|
for (int j = bw; j < ew; j += 1) {
|
|
|
|
res = MAX(res, i_ptr[i * IW + j]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
o_ptr[cur_oh * OW + cur_ow] = res;
|
|
|
|
}
|
|
|
|
|
|
|
|
kernel void kernel_pool_2d_avg_f32(
|
|
|
|
device const float * src0,
|
|
|
|
device float * dst,
|
|
|
|
constant int32_t & k0,
|
|
|
|
constant int32_t & k1,
|
|
|
|
constant int32_t & s0,
|
|
|
|
constant int32_t & s1,
|
|
|
|
constant int32_t & p0,
|
|
|
|
constant int32_t & p1,
|
|
|
|
constant int64_t & IH,
|
|
|
|
constant int64_t & IW,
|
|
|
|
constant int64_t & OH,
|
|
|
|
constant int64_t & OW,
|
|
|
|
constant int64_t & parallel_elements,
|
|
|
|
uint gid[[thread_position_in_grid]]) {
|
|
|
|
|
|
|
|
if (gid >= parallel_elements) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
const int idx = gid;
|
|
|
|
const int I_HW = IH * IW;
|
|
|
|
const int O_HW = OH * OW;
|
|
|
|
const int nc = idx / O_HW;
|
|
|
|
const int cur_oh = idx % O_HW / OW;
|
|
|
|
const int cur_ow = idx % O_HW % OW;
|
|
|
|
|
|
|
|
device const float * i_ptr = src0 + nc * I_HW;
|
|
|
|
device float * o_ptr = dst + nc * O_HW;
|
|
|
|
|
|
|
|
const int start_h = cur_oh * s1 - p1;
|
|
|
|
const int bh = MAX(0, start_h);
|
|
|
|
const int eh = MIN(IH, start_h + k1);
|
|
|
|
const int start_w = cur_ow * s0 - p0;
|
|
|
|
const int bw = MAX(0, start_w);
|
|
|
|
const int ew = MIN(IW, start_w + k0);
|
|
|
|
// const float scale = 1. / ((eh - bh) * (ew - bw));
|
|
|
|
const float scale = 1. / (k0 * k1);
|
|
|
|
|
|
|
|
float res = 0;
|
|
|
|
|
|
|
|
for (int i = bh; i < eh; i += 1) {
|
|
|
|
for (int j = bw; j < ew; j += 1) {
|
|
|
|
float cur = i_ptr[i * IW + j];
|
|
|
|
res += cur * scale;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
o_ptr[cur_oh * OW + cur_ow] = res;
|
|
|
|
}
|