Commit Graph

450 Commits

Author SHA1 Message Date
Shijie
3466c6ebcf
llama : add more qwen2 models (#5071) 2024-01-22 09:33:19 +02:00
slaren
6df465a91d
llama : run all KQV ops on the CPU with no KV offload (#5049)
ggml-ci
2024-01-20 17:05:49 +02:00
Shijie
9b75cb2b3c
llama : support upcoming Qwen2 (#5037) 2024-01-19 13:53:13 +02:00
chiranko
2b3b999cac
llama : add CodeShell support (#5016)
* llama: add codeshell support

* llama.cpp: fix codeshell with NeoX rope

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-19 11:07:27 +02:00
John
57e2a7a52a
llama : fix falcon arch for tied output embeddings (#4978)
* falcon arch fix for tied output embeddings

* Update llama.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update llama.cpp

* Update llama.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update llama.cpp

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-19 00:12:15 +02:00
slaren
96d7f56d29
llama : fix mlock with no-mmap with Metal (#5025) 2024-01-18 21:12:15 +01:00
Georgi Gerganov
38566680cd
ggml : add IQ2 to test-backend-ops + refactoring (#4990)
* ggml : add IQ2 to test-backend-ops + refactoring

ggml-ci

* cuda : update supports_op for IQ2

ggml-ci

* ci : enable LLAMA_CUBLAS=1 for CUDA nodes

ggml-ci

* cuda : fix out-of-bounds-access in `mul_mat_vec_q`

ggml-ci

* tests : avoid creating RNGs for each Q tensor

ggml-ci

* tests : avoid creating RNGs for each tensor

ggml-ci
2024-01-17 18:54:56 +02:00
Georgi Gerganov
44a1a4a41a
backend : add eval callback (#4935)
* backend : add eval callback

ggml-ci

* backend : group nodes in a single compute when user don't need them

* backend : clean-up the implementation

ggml-ci

* simple : do not perform tensor data copy if not needed

* simple : fix

* simple : no need for ggml_is_contiguous + fix bool parse

* llama : fix callback placement in llama_context_params

* backend : avoid double-ask callback calls

* simple : restore examples, imatrix will serve as a demo
2024-01-17 18:39:41 +02:00
Kawrakow
2b3a665d39
llama : use Q4_K for attn_v for Q2_K_S when n_gqa >= 4 (#4996)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-17 12:36:37 +02:00
Kawrakow
334a835a1c
ggml : importance matrix support for legacy quants (#4969)
* imatrix: adding support for legacy quants

* imatrix: guard Q4_0/Q5_0 against ffn_down craziness

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-16 19:51:26 +02:00
David Friehs
4483396751
llama : apply classifier-free guidance to logits directly (#4951) 2024-01-15 15:06:52 +02:00
Kawrakow
2faaef3979
llama : check for 256 divisibility for IQ2_XS, IQ2_XXS (#4950)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-15 10:09:38 +02:00
David Pflug
a836c8f534
llama : fix missing quotes (#4937) 2024-01-14 17:46:00 +02:00
Georgi Gerganov
bb0c139247
llama : check LLAMA_TRACE env for extra logging (#4929)
* llama : minor fix indent

* llama : check LLAMA_TRACE env for extra logging

ggml-ci
2024-01-14 13:26:53 +02:00
Georgi Gerganov
03c5267490
llama : use LLAMA_LOG_ macros for logging 2024-01-14 11:03:19 +02:00
Kawrakow
a128c38de8
Fix ffn_down quantization mix for MoE models (#4927)
* Fix ffn_down quantization mix for MoE models

In #4872 I did not consider the part where every third
tensor is quantized with more bits. Fir MoE this leads to tensors
of the same layer being quantized with different number of bits,
which is not considered as a possibility in the inference implementation
(it is assumed all experts use the same quantization).

* Fix the fix

* Review suggestion

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-14 10:53:39 +02:00
Karthik Kumar Viswanathan
ac32902a87
llama : support WinXP build with MinGW 8.1.0 (#3419) 2024-01-14 10:41:44 +02:00
Kawrakow
147b17ac94
2-bit quantizations (#4897)
* imatrix: load

* imatrix: WIP

* imatrix: Add Q2_K quantization

* imatrix: also guard against Q2_K_S quantization without importance matrix

* imatrix: guard even more against low-bit quantization misuse

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-14 09:45:56 +02:00
Kawrakow
807179ec58
Make Q3_K_S be the same as olf Q3_K_L for Mixtral-8x7B (#4906)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-14 09:44:30 +02:00
Georgi Gerganov
4be5ef556d
metal : remove old API (#4919)
ggml-ci
2024-01-13 20:45:45 +02:00
Georgi Gerganov
f172de03f1
llama : fix detokenization of non-special added-tokens (#4916)
Co-authored-by: goerch <jhr.walter@t-online.de>
2024-01-13 18:47:38 +02:00
David Friehs
df845cc982
llama : minimize size used for state save/load (#4820)
* examples : save-load-state: save only required state

* llama : only reserve n_vocab * n_batch at most for logits

llama_decode asserts that only n_batch tokens are passed each call, and
n_ctx is expected to be bigger than n_batch.

* llama : always reserve n_vocab * n_batch for logits

llama_context de-serialization breaks if the contexts have differing
capacity for logits and llama_decode will at maximum resize to
n_vocab * n_batch.

* llama : only save and restore used logits

for batch sizes of 512 this reduces save state in the best case by
around 62 MB, which can be a lot if planning to save on each message
to allow regenerating messages.

* llama : use ostringstream and istringstream for save and load

* llama : serialize rng into minimum amount of space required

* llama : break session version due to serialization changes
2024-01-13 18:29:43 +02:00
Georgi Gerganov
15ebe59210
convert : update phi-2 to latest HF repo (#4903)
* convert : update phi-2 to latest HF repo

ggml-ci

* py : try to fix flake stuff
2024-01-13 13:44:37 +02:00
slaren
e7e4df031b
llama : ggml-backend integration (#4766)
* llama : ggml-backend integration

* ggml-backend : add names to buffers

* fix unmap after loading

* batched-bench : add tensor_split param

* llama : check for null tensor_split

* ggml-backend : increase GGML_MAX_BACKENDS

* improve graph splitting, partial fix for --no-kv-offload

* cuda : add ggml-backend split buffer support

* cuda : do not create buffer types for devices that don't exist (fixes usage without CUDA devices available)

* ggml : fix null backend dereference (#4807)

* ggml : fix null backend dereference

* ggml : also check ggml_backend_is_cpu

* test-backend-ops : check buffer allocation failures

* llama : add cparam (split_mode) and command line argument (--split-mode, -sm) to configure the split mode (none, layer or row)

* ggml : fix mul_mat_id work size

* llama : rewrite session kv load/set without graphs

* minor

* llama : only initialize used backends, free backends on context free

* llama : abort ctx if cuda backend init fails

* llama : rewrite lora with ggml-backend and compute on CPU

ggml-ci

* llama : only map to a backend buffer the region of the file mapping containing the tensors used in the buffer

* opencl : add ggml-backend buffer type

* cuda : only use batched_cublas with batched mat muls (fixes fp16 tg perf)

* llama : on Metal, by default offload the full model

ggml-ci

* metal : page align the data ptr (#4854)

* Apply suggestions from code review

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* cuda : fix split buffer free

* address review comments

* llama-bench : add split-mode parameter

* fix whitespace

* opencl : fix double initialization

* server : add --split-mode parameter

* use async copy and compute to improve multi-gpu performance

ggml-ci

* use async memcpys to copy the graph outputs to the CPU

* fix opencl

* use a host buffer for the cpu compute buffer for faster copies to the gpu

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-01-12 20:07:38 +01:00
Georgi Gerganov
584d674be6
llama : remove redundant assert for StableLM (#4901) 2024-01-12 20:54:12 +02:00
Georgi Gerganov
3cabe80630
llama : fix typo "imp_embd" -> "inp_embd" 2024-01-12 13:11:15 +02:00
Georgi Gerganov
f445c0e68c
llama : fix llm_build_k_shift to use correct n_rot (#4889)
* llama : fix llm_build_k_shift to use correct n_rot

ggml-ci

* llama : always use hparams.n_rot for ggml_rope_custom

ggml-ci

* convert : fix persimmon conversion to write correct n_rot
2024-01-12 13:01:56 +02:00
Kawrakow
469e75d0a3
llama : restore intended k-quants mixes for MoE models (#4872)
* Restore intended k-quants quantization mixes for MoE models

* Update Q2_K_S values in the quantize tool

Still using LLaMA-v1 PPL values in the quant description
today does not make much sense. But let's leave this update
for another PR.

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-11 21:43:15 +02:00
Kawrakow
49662cbed3
ggml : SOTA 2-bit quants (add IQ2_XS) (#4856)
* iq2_xs: basics

* iq2_xs: this should have been in the basics

* iq2_xs: CUDA and scalar CPU works

* iq2_xs: WIP Metal

* iq2_xs: Metal now works

* iq2_xs: working, but dog slow, ARM_NEON dot product

* iq2_xs: better ARM_NEON dot product

We are now at 19.5 t/s for TG-128 and 61 t/s for PP-512 when
running on the CPU.

* iq2_xs: AVX2 dot product - 19.5 t/s

* iq2_xs: faster AVX2 dit product

21.4 t/s for TG-128, 59.2 t/s for PP-512.
The latter is 2x compared to the previous version.

* iq2_xs: had forgotten to delete iq2-data.h

* Add llama enum for IQ2_XS

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-11 21:39:39 +02:00
pudepiedj
43f76bf1c3
main : print total token count and tokens consumed so far (#4874)
* Token count changes

* Add show token count

* Updating before PR

* Two requested changes

* Move param def posn
2024-01-11 18:14:52 +02:00
Brian
57d016ba2d
llama : add additional suffixes for model params (#4834)
* llm_load_print_meta: Add additional suffixs for model params

* Update llama.cpp model param log

remove unneeded comments and convert from > to >=
2024-01-10 16:09:53 +02:00
Austin
329ff61569
llama : recognize 1B phi models (#4847)
This update categorizes models with 24 layers as MODEL_1B, ensuring compatibility with different Phi model variants without impacting existing Phi-2 model functionality.
2024-01-10 15:39:09 +02:00
Kawrakow
dd5ae06405
SOTA 2-bit quants (#4773)
* iq2_xxs: basics

* iq2_xxs: scalar and AVX2 dot products

Needed to change Q8_K to have quants in the -127...127 range,
else the IQ2_XXS AVX implementation becomes very awkward.
The alternative would have been to use Q8_0 instead. Perhaps
I'll change later, for now this is what we have.

* iq2_xxs: ARM_NEON dot product

Somehow strangely slow (112 ms/token).

* iq2_xxs: WIP Metal

Dequantize works, something is still wrong with the
dot product.

* iq2_xxs: Metal dot product now works

We have
PP-512 = 475 t/s
TG-128 = 47.3 t/s

Not the greatest performance, but not complete garbage either.

* iq2_xxs: slighty faster dot product

TG-128 is now 48.4 t/s

* iq2_xxs: slighty faster dot product

TG-128 is now 50.9 t/s

* iq2_xxs: even faster Metal dot product

TG-128 is now 54.1 t/s.

Strangely enough, putting the signs lookup table
into shared memory has a bigger impact than the
grid values being in shared memory.

* iq2_xxs: dequantize CUDA kernel - fix conflict with master

* iq2_xxs: quantized CUDA dot product (MMVQ)

We get TG-128 = 153.1 t/s

* iq2_xxs: slightly faster CUDA dot product

TG-128 is now at 155.1 t/s.

* iq2_xxs: add to llama ftype enum

* iq2_xxs: fix MoE on Metal

* Fix missing MMQ ops when on hipBLAS

I had put the ggml_supports_mmq call at the wrong place.

* Fix bug in qequantize_row_iq2_xxs

The 0.25f factor was missing.
Great detective work by @ggerganov!

* Fixing tests

* PR suggestion

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-08 16:02:32 +01:00
Georgi Gerganov
b0034d93ce
examples : add passkey test (#3856)
* examples : add passkey test

* passkey : better prints

* passkey : select pass key pos from CLI

* passkey : simplify n_past logic

* make : add passkey target

* passkey : add "self-extend"-like context extension (#4810)

* llama : "self-extend"-like context extension

* passkey : add comment

* passkey : add readme
2024-01-08 11:14:04 +02:00
Georgi Gerganov
9dede37d81
llama : remove unused vars (#4796) 2024-01-07 14:29:36 +02:00
Georgi Gerganov
3c36213df8
llama : remove redundant GQA check (#4796) 2024-01-07 11:21:53 +02:00
Georgi Gerganov
d117d4dc5d
llama : print tensor meta for debugging 2024-01-07 09:51:12 +02:00
Georgi Gerganov
540938f890
llama : llama_model_desc print number of experts 2024-01-02 16:26:45 +02:00
Marcus Dunn
0040d42eeb
llama : replace all API facing int's with int32_t (#4577)
* replaced all API facing `int`'s with `int32_t`

* formatting and missed `int` in `llama_token_to_piece`
2024-01-02 16:15:16 +02:00
postmasters
83e633c27e
llama : differentiate the KV dims in the attention (#4657)
* Add n_key_dim and n_value_dim

Some models use values that are not derived from `n_embd`.
Also remove `n_embd_head` and `n_embd_gqa` because it is not clear
which "head" is referred to (key or value).

Fix issue #4648.

* Fix `llm_build_kqv` to use `n_value_gqa`

* Rebase

* Rename variables

* Fix llm_build_kqv to be more generic wrt n_embd_head_k

* Update default values for n_embd_head_k and n_embd_head_v

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Fix llm_load_tensors: the asserts were not backcompat

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-02 13:51:28 +02:00
automaticcat
24a447e20a
ggml : add ggml_cpu_has_avx_vnni() (#4589)
* feat: add avx_vnni based on intel documents

* ggml: add avx vnni based on intel document

* llama: add avx vnni information display

* docs: add more details about using oneMKL and oneAPI for intel processors

* docs: add more details about using oneMKL and oneAPI for intel processors

* docs: add more details about using oneMKL and oneAPI for intel processors

* docs: add more details about using oneMKL and oneAPI for intel processors

* docs: add more details about using oneMKL and oneAPI for intel processors

* Update ggml.c

Fix indentation upgate

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-30 10:07:48 +02:00
manikbhandari
ea5497df5d
gpt2 : Add gpt2 architecture integration (#4555) 2023-12-28 15:03:57 +01:00
Nam D. Tran
f6793491b5
llama : add AWQ for llama, llama2, mpt, and mistral models (#4593)
* update: awq support llama-7b model

* update: change order

* update: benchmark results for llama2-7b

* update: mistral 7b v1 benchmark

* update: support 4 models

* fix: Readme

* update: ready for PR

* update: readme

* fix: readme

* update: change order import

* black

* format code

* update: work for bot mpt and awqmpt

* update: readme

* Rename to llm_build_ffn_mpt_awq

* Formatted other files

* Fixed params count

* fix: remove code

* update: more detail for mpt

* fix: readme

* fix: readme

* update: change folder architecture

* fix: common.cpp

* fix: readme

* fix: remove ggml_repeat

* update: cicd

* update: cicd

* uppdate: remove use_awq arg

* update: readme

* llama : adapt plamo to new ffn

ggml-ci

---------

Co-authored-by: Trần Đức Nam <v.namtd12@vinai.io>
Co-authored-by: Le Hoang Anh <v.anhlh33@vinai.io>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-27 17:39:45 +02:00
slaren
dc68f0054c
cuda : fix vmm pool with multi GPU (#4620)
* cuda : fix vmm pool with multi GPU

* hip

* use recommended granularity instead of minimum

* better error checking

* fix mixtral

* use cudaMemcpy3DPeerAsync

* use cuda_pool_alloc in ggml_cuda_op_mul_mat

* consolidate error checking in ggml_cuda_set_device

* remove unnecessary inlines

ggml-ci

* style fixes

* only use vmm for the main device

* fix scratch buffer size, re-enable vmm pool for all devices

* remove unnecessary check id != g_main_device
2023-12-26 21:23:59 +01:00
Shintarou Okada
753be377b6
llama : add PLaMo model (#3557)
* add plamo mock

* add tensor loading

* plamo convert

* update norm

* able to compile

* fix norm_rms_eps hparam

* runnable

* use inp_pos

* seems ok

* update kqv code

* remove develop code

* update README

* shuffle attn_q.weight and attn_output.weight for broadcasting

* remove plamo_llm_build_kqv and use llm_build_kqv

* fix style

* update

* llama : remove obsolete KQ_scale

* plamo : fix tensor names for correct GPU offload

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-24 15:35:49 +02:00
slaren
5bf3953d7e
cuda : improve cuda pool efficiency using virtual memory (#4606)
* cuda : improve cuda pool efficiency using virtual memory

* fix mixtral

* fix cmake build

* check for vmm support, disable for hip

ggml-ci

* fix hip build

* clarify granularity

* move all caps to g_device_caps

* refactor error checking

* add cuda_pool_alloc, refactor most pool allocations

ggml-ci

* fix hip build

* CUBLAS_TF32_TENSOR_OP_MATH is not a macro

* more hip crap

* llama : fix msvc warnings

* ggml : fix msvc warnings

* minor

* minor

* cuda : fallback to CPU on host buffer alloc fail

* Update ggml-cuda.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Update ggml-cuda.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* ensure allocations are always aligned

* act_size -> actual_size

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2023-12-24 14:34:22 +01:00
slaren
708e179e85
fallback to CPU buffer if host buffer alloc fails (#4610) 2023-12-23 16:10:51 +01:00
slaren
48b7ff193e
llama : fix platforms without mmap (#4578)
* llama : fix platforms without mmap

* win32 : limit prefetch size to the file size

* fix win32 error clobber, unnecessary std::string in std::runtime_error
2023-12-22 13:12:53 +02:00
crasm
c7e9701f86
llama : add ability to cancel model loading (#4462)
* llama : Add ability to cancel model load

Updated llama_progress_callback so that if it returns false, the model
loading is aborted.

* llama : Add test for model load cancellation

* Fix bool return in llama_model_load, remove std::ignore use

* Update llama.cpp

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

* Fail test if model file is missing

* Revert "Fail test if model file is missing"

This reverts commit 32ebd525bf.

* Add test-model-load-cancel to Makefile

* Revert "Revert "Fail test if model file is missing""

This reverts commit 2796953257.

* Simplify .gitignore for tests, clang-tidy fixes

* Label all ctest tests

* ci : ctest uses -L main

* Attempt at writing ctest_with_model

* ci : get ci/run.sh working with test-model-load-cancel

* ci : restrict .github/workflows/build.yml ctest to -L main

* update requirements.txt

* Disable test-model-load-cancel in make

* Remove venv before creation

* Restructure requirements.txt

Top-level now imports the specific additional requirements for each
python file. Using `pip install -r requirements.txt` will fail if
versions become mismatched in the per-file requirements.

* Make per-python-script requirements work alone

This doesn't break the main requirements.txt.

* Add comment

* Add convert-persimmon-to-gguf.py to new requirements.txt scheme

* Add check-requirements.sh script and GitHub workflow

* Remove shellcheck installation step from workflow

* Add nocleanup special arg

* Fix merge

see: https://github.com/ggerganov/llama.cpp/pull/4462#discussion_r1434593573

* reset to upstream/master

* Redo changes for cancelling model load

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
2023-12-22 08:19:36 +02:00
Georgi Gerganov
afefa319f1
ggml : change ggml_scale to take a float instead of tensor (#4573)
* ggml : change ggml_scale to take a float instead of tensor

* ggml : fix CPU implementation

* tests : fix test-grad0

ggml-ci
2023-12-21 23:20:49 +02:00
slaren
d232aca5a7
llama : initial ggml-backend integration (#4520)
* llama : initial ggml-backend integration

* add ggml-metal

* cuda backend can be used though ggml-backend with LLAMA_GGML_BACKEND_CUDA_TEST
access all tensor data with ggml_backend_tensor_get/set

* add ggml_backend_buffer_clear
zero-init KV cache buffer

* add ggml_backend_buffer_is_hos, used to avoid copies if possible when accesing tensor data

* disable gpu backends with ngl 0

* more accurate mlock

* unmap offloaded part of the model

* use posix_fadvise64(.., POSIX_FADV_SEQUENTIAL) to improve performance with mmap

* update quantize and lora

* update session copy/set to use ggml-backend

ggml-ci

* use posix_fadvise instead of posix_fadvise64

* ggml_backend_alloc_ctx_tensors_from_buft : remove old print

* llama_mmap::align_offset : use pointers instead of references for out parameters

* restore progress_callback behavior

* move final progress_callback call to load_all_data

* cuda : fix fprintf format string (minor)

* do not offload scales

* llama_mmap : avoid unmapping the same fragments again in the destructor

* remove unnecessary unmap

* metal : add default log function that prints to stderr, cleanup code

ggml-ci

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-21 21:07:46 +01:00
Marcus Dunn
31f27758fa
llama : allow getting n_batch from llama_context in c api (#4540)
* allowed getting n_batch from llama_context in c api

* changed to use `uint32_t` instead of `int`

* changed to use `uint32_t` instead of `int` in `llama_n_ctx`

* Update llama.h

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-21 21:57:48 +02:00
Johannes Gäßler
d3223afdad
llama : disable per-tensor info prints on model load (#4562) 2023-12-21 18:34:17 +02:00
Ebey Abraham
b9e74f9bca
llama : add phi-2 + fix NeoX rope + ggml_mul_mat_set_prec (#4490)
* phi2 implementation

* fix breaking change

* phi-2 : various fixes

* phi-2 : use layer norm eps

* py : whitespaces

* llama : fix meta KV override bug

* convert : phi don't add BOS token

* convert : revert "added_tokens_decoder" change

* phi-2 : scale Q instead of KQ for better precision

* ggml : fix NeoX rope to rotate just first n_dims

* cuda : less diff in the rope_neox kernel

* ggml : add ggml_mul_mat_set_prec

ggml-ci

* Update ggml-cuda.cu

Co-authored-by: slaren <slarengh@gmail.com>

* Update ggml-cuda.cu

Co-authored-by: slaren <slarengh@gmail.com>

* cuda : ggml_cuda_op_mul_mat_cublas support F32 precision

* cuda : remove oboslete comment

---------

Co-authored-by: Ebey Abraham <ebeyabraham@microsoft.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
2023-12-18 19:27:47 +02:00
hankcs
3c04bf6da8
llama : fix try_override for bool_value which always return true (#4519) 2023-12-18 15:14:58 +02:00
Jared Van Bortel
2994f0c5a2
decode : fix logits_valid for legacy API (#4516) 2023-12-17 19:39:02 -05:00
Georgi Gerganov
800a489e4a
llama.swiftui : add bench functionality (#4483)
* llama.swiftui : add bench button

* llama.swiftui : initial bench functionality

* force to use n_gpu_layers on simulator

* add download buttons & expose llamaState.loadModel

* update project.pbxproj

* comment #Preview & fix editorconfig check

* gitignore : xcode stuff

* llama.swiftui : UX improvements

* llama.swiftui : avoid data copy via "downloadTask"

* llama.swiftui : remove model from project

* llama : remove "mostly" from model infos

* llama.swiftui : improve bench

---------

Co-authored-by: jhen <developer@jhen.me>
2023-12-17 19:38:41 +02:00
slaren
c6c4fc081c
lora : add support for non-llama models (#3333)
* lora : add support for non-llama models

ggml-ci

* avoid leaking ggml_context on failure
cleanup

ggml-ci

* lora : allow 1d tensors

* lora : include embd and output layers in size calculation

* fix style
2023-12-16 18:58:46 +01:00
Jared Van Bortel
8a5be3bd58
llama : sanity checks for access to logits (#4274)
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-15 22:16:15 -05:00
slaren
cafcd4f895
ggml : remove n_dims from ggml_tensor (#4469)
ggml-ci
2023-12-14 16:52:08 +01:00
LostRuins
20a68a7030
ggml : add ggml_row_size() (fixes llama out of space) (#4461)
* Fixes "Not enough space in the context's memory pool" encountered on certain models, which seems to be caused by some imprecision related to the automatic casting of floating point values

* do not cast to size_t, instead just use doubles

* ggml : add ggml_row_size(), deprecate ggml_type_sizef()

* ggml : fix row size compute to avoid overflows

* tests : fix sizey -> sizez

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-14 14:13:33 +02:00
slaren
799a1cb13b
llama : add Mixtral support (#4406)
* convert : support Mixtral as LLAMA arch

* convert : fix n_ff typo

* llama : model loading

* ggml : sync latest ggml_mul_mat_id

* llama : update graph to support MoE

* llama : fix cur -> cur_expert

* llama : first working version

* llama : fix expert weighting in the FFN

* ggml : ggml_get_rows support 2D indexing [n_tokens, n_experts] (cpu only)

* ggml : add n_as argument to ggml_mul_mat_id

* ggml : fix ggml_get_rows to take into account ne02 / ne11

* metal : add more general support for ggml_get_rows + tests

* llama : add basic support for offloading moe with CUDA

* metal : add/mul/div use general kernel when src1 not cont

* metal : reduce the kernel launches for ggml_mul_mat_id

* ggml : get_rows : support non-contiguos tensors with gaps, generalize up to 3D

* ggml : update get_rows f16 and q

* cuda : support non-contiguous src1 in get_rows

* llama : offload missing ffn_moe_silu

* metal : fix ggml_get_rows to work with non-cont src1

* metal : add indirect mat-vec kernels for all quantization types

* llama : do not quantize expert gating tensors

* llama : add n_expert and n_expert_used to hparams + change quants

* test-backend-ops : add moe test

* cuda : fix get_rows when ncols is odd

* convert : determine n_ctx correctly

* metal : fix ggml_mul_mat_id for F32

* test-backend-ops : make experts more evenly probable (test_moe)

* test-backend-ops : cleanup, add moe test for batches

* test-backend-ops : add cpy from f32 -> all types test

* test-backend-ops : fix dequantize block offset

* llama : fix hard-coded number of experts

* test-backend-ops : simplify and disable slow tests to avoid CI timeout

* test-backend-ops : disable MOE test with thread sanitizer

* cuda : fix mul_mat_id with multi gpu

* convert : use 1e6 rope_freq_base for mixtral

* convert : fix style

* convert : support safetensors format

* gguf-py : bump version

* metal : add cpy f16 -> f32 kernel

* metal : fix binary ops for ne10 % 4 != 0

* test-backend-ops : add one more sum_rows test

* ggml : do not use BLAS with ggml_mul_mat_id

* convert-hf : support for mixtral-instruct (#4428)

* convert : typo fix, add additional hyperparameters, use LLaMA arch for Mixtral-instruct

* convert : use sentencepiece tokenizer for Mixtral-instruct

* convert : make flake8 happy

* metal : fix soft_max kernels

ref: 1914017863

* metal : limit kernels to not use more than the allowed threads

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Radek Pilar <github@mrkva.eu>
2023-12-13 14:04:25 +02:00
Richard Kiss
9494d7c477
english : use typos to fix comments and logs (#4354) 2023-12-12 11:53:36 +02:00
Xiang (Kevin) Li
e18f7345a3
grammar : revert the replacement of llama_token_to_piece with id_to_token (#4396) 2023-12-09 23:29:27 +02:00
Georgi Gerganov
bcc0eb4591
llama : per-layer KV cache + quantum K cache (#4309)
* per-layer KV

* remove unnecessary copies

* less code duplication, offload k and v separately

* llama : offload KV cache per-layer

* llama : offload K shift tensors

* llama : offload for rest of the model arches

* llama : enable offload debug temporarily

* llama : keep the KV related layers on the device

* llama : remove mirrors, perform Device -> Host when partial offload

* common : add command-line arg to disable KV cache offloading

* llama : update session save/load

* llama : support quantum K cache (#4312)

* llama : support quantum K cache (wip)

* metal : add F32 -> Q8_0 copy kernel

* cuda : add F32 -> Q8_0 copy kernel

ggml-ci

* cuda : use mmv kernel for quantum cache ops

* llama : pass KV cache type through API

* llama : fix build

ggml-ci

* metal : add F32 -> Q4_0 copy kernel

* metal : add F32 -> Q4_1 copy kernel

* cuda : wip

* cuda : add F32 -> Q4_0 and F32 -> Q4_1 copy kernels

* llama-bench : support type_k/type_v

* metal : use mm kernel only for quantum KV cache

* cuda : add comment

* llama : remove memory_f16 and kv_f16 flags

---------

Co-authored-by: slaren <slarengh@gmail.com>

* readme : add API change notice

---------

Co-authored-by: slaren <slarengh@gmail.com>
2023-12-07 13:03:17 +02:00
Marcus Dunn
5f6e0c0dff
grammar : pre-computed pieces + reserve mem + less string copies (#4330)
* reserve space for codepoints

* improvement for the appended 0

* used precomputed token text for grammar sample

* reserve canidates_decoded

* reserve canidates_grammar

* remove candidates_decoded

* Revert "remove candidates_decoded"

This reverts commit 3773328080.

* changed decode_utf8 to take src by ref
2023-12-05 22:55:12 +02:00
Kerfuffle
5aa365d88f
llama : allow overriding GGUF metadata when loading model (#4092)
* feat: Allow overriding GGUF metadata when loading model

* Fix the one time GCC is stricter than clang about something

* Step1

* Refactor... basically everything!

* Nuke obsolete GetArrayLen struct

* simplify std::string specialization

* Various cleanups

Add informational output when overrides are applied

Warn user when an override with the wrong type is specified

* Fix broken logic for parsing bool KV overrides
Fix issue where overrides didn't apply when key missing in GGUF metadata
Resolve merge changes

* llama : rearrange model params

* Update new GET_KEY call

Add note that metadata KV overrides aren't reflected in initial metadata KV info dump

---------

Co-authored-by: cebtenzzre <cebtenzzre@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-05 19:19:18 +02:00
Georgi Gerganov
d7b800b8bc
llama : pad KV cache size (#4280)
* llama : pad KV cache size to 32

* metal : try to improve batched decoding
2023-12-03 10:58:16 +02:00
Georgi Gerganov
5a7d3125e7
llama : avoid using "optional" keyword (#4283) 2023-12-01 20:39:12 +02:00
Georgi Gerganov
d5a1cbde60
llama : support optional tensors (#4283) 2023-12-01 20:35:47 +02:00
CausalLM
03562f3a86
llama : support attention bias on LLaMA architecture (#4283)
* Support attention_bias on LLaMA architecture

QKVO bias, should fix InternLM (https://github.com/ggerganov/llama.cpp/issues/3133) and works for LLaMAfied Qwen models (https://github.com/ggerganov/llama.cpp/pull/3743#issuecomment-1825923608).

* check existence of qkvo bias while loading llama models

Tested on LLaMA2, CUDA and CPU.

* Update llama.cpp
2023-12-01 20:17:06 +02:00
Shijie
37c746d687
llama : add Qwen support (#4281)
* enable qwen to llama.cpp

* llama : do not GPU split bias tensors

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-01 20:16:31 +02:00
Georgi Gerganov
880f57973b
llama : fix integer overflow during quantization (#4284)
happens with multi-threaded quantization of Qwen-72B

ggml-ci
2023-12-01 18:42:11 +02:00
Georgi Gerganov
ef47ec18da
ggml : add ggml_soft_max_ext (#4256)
* metal : implement soft_max_ext

* cuda : implement soft_max_ext

* ggml : implement soft_max_ext (CPU)

* batched-bench : print threads

ggml-ci

* metal : simplify soft_max encoding

ggml-ci

* cuda : use 512 threads for soft_max instead of 32

* ggml : update soft max cpu

* cuda : do warp-based block reduce

* cuda : increase max block size to 1024

* cuda : fix warp reduction initialization of shared mem

* metal : warp-based reduction for soft max kernel

* metal : warp-based reduce for rms_norm

* metal : simplify soft max kernel

ggml-ci

* alloc : fix build with debug
2023-12-01 10:51:24 +02:00
Jared Van Bortel
15f5d96037
build : fix build info generation and cleanup Makefile (#3920)
* cmake : fix joining of REAL_GIT_DIR

* fix includes with help from include-what-you-use

* make : remove unneeded deps and add test-rope target

* fix C includes in C++ source files

* Revert "fix includes with help from include-what-you-use"

This reverts commit 635e9fadfd.
2023-12-01 00:23:08 +02:00
Daniel Bevenius
b18c66ca6e
llama : fix alignment of general.name in print meta (#4254)
* llama: fix alignment of general.name in print meta

This commit fixes the alignment of the general.name field in the
llm_load_print_meta function.

Currently the output looks like this:
```console
llm_load_print_meta: model ftype      = mostly Q4_0
llm_load_print_meta: model params     = 13.02 B
llm_load_print_meta: model size       = 6.86 GiB (4.53 BPW)
llm_load_print_meta: general.name   = LLaMA v2
```
And with this commit it looks like this:
```console
llm_load_print_meta: model ftype      = mostly Q4_0
llm_load_print_meta: model params     = 13.02 B
llm_load_print_meta: model size       = 6.86 GiB (4.53 BPW)
llm_load_print_meta: general.name     = LLaMA v2
```

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>

* llama: fix alignment of special tokens

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>

---------

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2023-11-30 23:43:08 +02:00
tarcey
954e22858c
llama : fix typical sampling (#4261)
Typical sampling was broken because after copying new_candidates into canditates, the "sorted" bool is left at "true", but the new data is no longer sorted according to probability. Patch to set "sorted" to false.

Test: Generating with temp=0.0001 (approx. argmax)  should generate the same sequence at typical>=1.0 and typical=0.9999 (approx. disabled, but enters the typical sampling codepath).
2023-11-30 23:40:23 +02:00
Georgi Gerganov
8406b0924b
ggml : re-enable BLAS for CPU when src0 != F32 + remove redundant full offload checks in llama.cpp (#4240)
* ggml : use blas even if src0 is not F32

* llama : use n_threads_batch only when n_tokens >= 32

ggml-ci

* llama : revert n_threads_batch logic

ggml-ci
2023-11-28 10:32:03 +02:00
Marcus Dunn
f837c3a992
llama : grammar reserve space in decode_utf8 (#4210)
* reserve space for codepoints

* improvement for the appended 0
2023-11-25 18:58:23 +02:00
slaren
e9c13ff781
llama : set metal log callback correctly (#4204) 2023-11-24 18:10:01 +01:00
slaren
8a052c131e
ggml-cuda : support stablelm rope (#4156)
* ggml-cuda : support stablelm rope

* remove unused freq_base kernel parameter

* add n_dims parameter to llm_build_k_shift, default to n_rot via overload

* llama : fix llm_build_k_shift args

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-11-24 18:04:31 +01:00
Georgi Gerganov
6b0a7420d0
llama : KV cache view API + better KV cache management (#4170)
* llama : keep track of used KV cells + better KV cache management

* llama : zero KV cache used upon clear

ggml-ci

* llama : allow exporting a view of the KV cache (#4180)

* Allow exporting a view of the KV cache

* Allow dumping the sequences per cell in common

* Track max contiguous cells value and position as well

* Fix max contiguous empty cells index calculation

Make dump functions deal with lengths or sequences counts > 10 better

* Fix off by one error in dump_kv_cache_view

* Add doc comments for KV cache view functions

Eliminate cell sequence struct; use llama_seq_id directly

Minor cleanups

* common : add -dkvc arg for enabling kv cache dumps

---------

Co-authored-by: Kerfuffle <44031344+KerfuffleV2@users.noreply.github.com>
2023-11-23 19:07:56 +02:00
Galunid
8e672efe63
stablelm : simplify + speedup generation (#4153) 2023-11-21 16:22:30 +01:00
slaren
e937066420
gguf-py : export chat templates (#4125)
* gguf-py : export chat templates

* llama.cpp : escape new lines in gguf kv info prints

* gguf-py : bump version

* gguf-py : check chat_template type

* gguf-py : initialize chat_template
2023-11-19 11:10:52 +01:00
slaren
bbecf3f415
llama : increase max nodes (#4115) 2023-11-17 21:39:11 +02:00
slaren
e85bb1a8e7
llama : add functions to get the model's metadata (#4013)
* llama : add functions to get the model's metadata

* format -> std::to_string

* better documentation
2023-11-17 17:17:37 +02:00
Georgi Gerganov
4f447a4833
llama : fix data units (#4101)
* llama : fix data units

ggml-ci

* Revert "llama : fix data units"

This reverts commit f5feac831f.

* llama : disambiguate data units

ggml-ci
2023-11-17 10:00:15 +02:00
Kerfuffle
91f6499393
Respect tokenizer.ggml.add_bos_token value when tokenizing (#4040)
* gguf-py: gguf-dump: Respect --no-tensor flag in JSON mode.

* Respect add_bos_token GGUF metadata value

* gguf-py: Try to fix SpecialVocab giving up too easily for the Nth time
2023-11-16 19:14:37 -07:00
Jared Van Bortel
a6fc554e26
llama : restore prefix space in llama tokenizer (#4081) 2023-11-15 11:34:47 -05:00
Galunid
36eed0c42c
stablelm : StableLM support (#3586)
* Add support for stablelm-3b-4e1t
* Supports GPU offloading of (n-1) layers
2023-11-14 11:17:12 +01:00
Georgi Gerganov
4760e7cc0b
sync : ggml (backend v2) (#3912)
* sync : ggml (backend v2) (wip)

* sync : migrate examples and llama.cpp to dynamic graphs (wip)

* sync : update tests + fix max op params to 64

ggml-ci

* sync : ggml-cuda

ggml-ci

* llama : fix save/load state context size

ggml-ci

* sync : try to fix build on tvOS

* sync : pass custom graph sizes in training examples

* sync : update graph copies to new ggml API

* sync : update sync-ggml.sh with new files

* scripts : fix header in sync script

* train : fix context size calculations

* llama : increase inference graph size up to 4096 nodes

* train : allocate grads for backward graphs

* train : allocate grads for gb_tmp
2023-11-13 14:16:23 +02:00
Kerfuffle
bb50a792ec
Add ReLU and SQR CUDA ops to (partially) fix Persimmon offloading (#4041)
* Add ReLU and SQR CUDA ops to fix Persimmon offloading

* Persimmon loader: More helpful error on CUDA/ROCM when offloading too many layers
2023-11-13 01:58:15 -07:00
Galunid
df9d1293de
Unbreak persimmon after #3837 (#4010) 2023-11-10 14:24:54 +01:00
Meng Zhang
46876d2a2c
cuda : supports running on CPU for GGML_USE_CUBLAS=ON build (#3946)
* protyping the idea that supports running on CPU for a GGML_USE_CUBLAS=on build

* doc: add comments to ggml_cublas_loaded()

* fix defined(...)
2023-11-07 08:49:08 +02:00
Meng Zhang
3d48f42efc
llama : mark LLM_ARCH_STARCODER as full offload supported (#3945)
as done in https://github.com/ggerganov/llama.cpp/pull/3827
2023-11-05 14:40:08 +02:00
cebtenzzre
3fdbe6b66b
llama : change yarn_ext_factor placeholder to -1 (#3922) 2023-11-03 08:31:58 +02:00
Georgi Gerganov
1efae9b7dc
llm : prevent from 1-D tensors being GPU split (#3697) 2023-11-02 09:54:44 +02:00
cebtenzzre
0eb332a10f
llama : fix llama_context_default_params after #2268 (#3893) 2023-11-01 19:29:14 -04:00
cebtenzzre
898aeca90a
llama : implement YaRN RoPE scaling (#2268)
Co-authored-by: cebtenzzre <cebtenzzre@gmail.com>
Co-authored-by: Jeffrey Quesnelle <jquesnelle@gmail.com>
2023-11-01 18:04:33 -04:00
Georgi Gerganov
c43c2da8af
llm : fix llm_build_kqv taking unused tensor (benign, #3837) 2023-11-01 23:08:30 +02:00