2024-09-03 17:21:46 +02:00
|
|
|
// This file defines tests for various GGML ops and backends.
|
|
|
|
// For the forward pass it asserts that the results of multiple backends computing the same GGML ops are consistent.
|
2024-09-29 23:18:02 +02:00
|
|
|
// For the backward pass it asserts that the gradients from backpropagation are consistent
|
2024-09-03 17:21:46 +02:00
|
|
|
// with the gradients obtained via the method of finite differences ("grad" mode, this is optional).
|
|
|
|
// It is also possible to check the performance ("perf" mode).
|
|
|
|
//
|
|
|
|
// this file has three sections: Section 1 does general setup, section 2 defines the GGML ops to be tested,
|
|
|
|
// and section 3 defines which tests to run.
|
|
|
|
// Quick start for adding a new GGML op: Go to section 2 and create a struct that inherits from test_case,
|
|
|
|
// then go to section 3 and add an instantiation of your struct.
|
|
|
|
|
|
|
|
|
|
|
|
// ##############################
|
|
|
|
// ## Section 1: General Setup ##
|
|
|
|
// ##############################
|
|
|
|
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
#include <ggml.h>
|
|
|
|
#include <ggml-alloc.h>
|
|
|
|
#include <ggml-backend.h>
|
2024-05-12 19:40:45 +02:00
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
#include <algorithm>
|
|
|
|
#include <array>
|
|
|
|
#include <cfloat>
|
2024-09-03 17:21:46 +02:00
|
|
|
#include <cstdint>
|
2023-12-07 21:26:54 +01:00
|
|
|
#include <cstring>
|
2024-09-08 08:57:57 +02:00
|
|
|
#include <cinttypes>
|
2023-12-07 21:26:54 +01:00
|
|
|
#include <memory>
|
|
|
|
#include <random>
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <string>
|
|
|
|
#include <thread>
|
2024-09-28 14:32:46 +02:00
|
|
|
#include <future>
|
2023-12-07 21:26:54 +01:00
|
|
|
#include <vector>
|
|
|
|
|
|
|
|
static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
|
2024-09-28 14:32:46 +02:00
|
|
|
size_t nels = ggml_nelements(tensor);
|
|
|
|
std::vector<float> data(nels);
|
|
|
|
{
|
|
|
|
// parallel initialization
|
|
|
|
static const size_t n_threads = std::thread::hardware_concurrency();
|
|
|
|
// static RNG initialization (revisit if n_threads stops being constant)
|
|
|
|
static std::vector<std::default_random_engine> generators = []() {
|
|
|
|
std::random_device rd;
|
|
|
|
std::vector<std::default_random_engine> vec;
|
|
|
|
vec.reserve(n_threads);
|
|
|
|
//for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(1234 + i); } // fixed seed
|
|
|
|
for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(rd()); }
|
|
|
|
return vec;
|
|
|
|
}();
|
|
|
|
|
|
|
|
auto init_thread = [&](size_t ith, size_t start, size_t end) {
|
|
|
|
std::uniform_real_distribution<float> distribution(min, max);
|
|
|
|
auto & gen = generators[ith];
|
|
|
|
for (size_t i = start; i < end; i++) {
|
|
|
|
data[i] = distribution(gen);
|
|
|
|
}
|
|
|
|
};
|
2023-12-07 21:26:54 +01:00
|
|
|
|
2024-09-28 14:32:46 +02:00
|
|
|
std::vector<std::future<void>> tasks;
|
|
|
|
tasks.reserve(n_threads);
|
|
|
|
for (size_t i = 0; i < n_threads; i++) {
|
|
|
|
size_t start = i*nels/n_threads;
|
|
|
|
size_t end = (i+1)*nels/n_threads;
|
|
|
|
tasks.push_back(std::async(std::launch::async, init_thread, i, start, end));
|
2023-12-07 21:26:54 +01:00
|
|
|
}
|
2024-09-28 14:32:46 +02:00
|
|
|
for (auto & t : tasks) {
|
|
|
|
t.get();
|
2024-05-18 02:39:54 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-12-13 13:04:25 +01:00
|
|
|
if (tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_I32) {
|
2024-09-28 14:32:46 +02:00
|
|
|
ggml_backend_tensor_set(tensor, data.data(), 0, nels * sizeof(float));
|
2024-05-08 08:30:09 +02:00
|
|
|
} else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16 || tensor->type == GGML_TYPE_BF16) {
|
2024-09-28 14:32:46 +02:00
|
|
|
GGML_ASSERT(nels % ggml_blck_size(tensor->type) == 0);
|
|
|
|
|
|
|
|
// dummy importance matrix
|
|
|
|
std::vector<float> imatrix(tensor->ne[0], 1.0f);
|
2024-01-17 17:54:56 +01:00
|
|
|
const float * im = imatrix.data();
|
|
|
|
if (!ggml_quantize_requires_imatrix(tensor->type)) {
|
|
|
|
// when the imatrix is optional, we want to test both quantization with and without imatrix
|
|
|
|
// use one of the random numbers to decide
|
|
|
|
if (data[0] > 0.5f*(min + max)) {
|
|
|
|
im = nullptr;
|
|
|
|
}
|
|
|
|
}
|
2024-07-19 17:17:27 +02:00
|
|
|
|
2024-09-28 14:32:46 +02:00
|
|
|
std::vector<uint8_t> dataq(ggml_row_size(tensor->type, nels));
|
|
|
|
{
|
|
|
|
// parallel quantization by block
|
|
|
|
size_t blck_size = ggml_blck_size(tensor->type);
|
|
|
|
size_t n_blocks = nels / blck_size;
|
|
|
|
|
|
|
|
auto quantize_thread = [&](size_t start, size_t end) {
|
|
|
|
ggml_quantize_chunk(tensor->type, data.data(), dataq.data(),
|
|
|
|
start * blck_size, end - start, blck_size, im);
|
|
|
|
};
|
|
|
|
|
|
|
|
const size_t min_blocks_per_thread = 1;
|
|
|
|
const size_t n_threads = std::min<size_t>(std::thread::hardware_concurrency()/2,
|
|
|
|
std::max<size_t>(1, n_blocks / min_blocks_per_thread));
|
|
|
|
std::vector<std::future<void>> tasks;
|
|
|
|
tasks.reserve(n_threads);
|
|
|
|
for (size_t i = 0; i < n_threads; i++) {
|
|
|
|
size_t start = i*n_blocks/n_threads;
|
|
|
|
size_t end = (i+1)*n_blocks/n_threads;
|
|
|
|
tasks.push_back(std::async(std::launch::async, quantize_thread, start, end));
|
|
|
|
}
|
|
|
|
for (auto & t : tasks) {
|
|
|
|
t.get();
|
|
|
|
}
|
|
|
|
}
|
2023-12-07 21:26:54 +01:00
|
|
|
ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size());
|
2023-12-29 18:07:03 +01:00
|
|
|
} else if (tensor->type == GGML_TYPE_I8 || tensor->type == GGML_TYPE_I16 || tensor->type == GGML_TYPE_I32) {
|
|
|
|
// This is going to create some weird integers though.
|
|
|
|
ggml_backend_tensor_set(tensor, data.data(), 0, ggml_nbytes(tensor));
|
2024-10-03 17:29:59 +02:00
|
|
|
} else if (tensor->type == GGML_TYPE_I64) {
|
|
|
|
// Integers with a size of 8 bytes can be set by mirroring the float data, the specific values are again not really meaningful.
|
|
|
|
const size_t nbytes_half = ggml_nbytes(tensor)/2;
|
|
|
|
ggml_backend_tensor_set(tensor, data.data(), 0*nbytes_half, nbytes_half);
|
|
|
|
ggml_backend_tensor_set(tensor, data.data(), 1*nbytes_half, nbytes_half);
|
2023-12-07 21:26:54 +01:00
|
|
|
} else {
|
2024-07-27 04:41:55 +02:00
|
|
|
GGML_ABORT("fatal error");
|
2023-12-07 21:26:54 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static std::vector<float> tensor_to_float(const ggml_tensor * t) {
|
|
|
|
std::vector<float> tv;
|
|
|
|
tv.reserve(ggml_nelements(t));
|
|
|
|
|
|
|
|
std::vector<uint8_t> buf(ggml_nbytes(t));
|
|
|
|
ggml_backend_tensor_get(t, buf.data(), 0, ggml_nbytes(t));
|
|
|
|
|
2024-10-08 14:21:43 +02:00
|
|
|
const auto * tt = ggml_get_type_traits(t->type);
|
2023-12-13 13:04:25 +01:00
|
|
|
size_t bs = ggml_blck_size(t->type);
|
2023-12-14 20:05:21 +01:00
|
|
|
std::vector<float> vq(ggml_blck_size(t->type));
|
|
|
|
bool quantized = ggml_is_quantized(t->type);
|
2023-12-13 13:04:25 +01:00
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
// access elements by index to avoid gaps in views
|
|
|
|
for (int64_t i3 = 0; i3 < t->ne[3]; i3++) {
|
|
|
|
for (int64_t i2 = 0; i2 < t->ne[2]; i2++) {
|
|
|
|
for (int64_t i1 = 0; i1 < t->ne[1]; i1++) {
|
2023-12-13 13:04:25 +01:00
|
|
|
for (int64_t i0 = 0; i0 < t->ne[0]; i0 += bs) {
|
|
|
|
size_t i = i3*t->nb[3] + i2*t->nb[2] + i1*t->nb[1] + i0/bs*t->nb[0];
|
2023-12-07 21:26:54 +01:00
|
|
|
if (t->type == GGML_TYPE_F16) {
|
2023-12-13 13:04:25 +01:00
|
|
|
tv.push_back(ggml_fp16_to_fp32(*(ggml_fp16_t*)&buf[i]));
|
2024-05-08 08:30:09 +02:00
|
|
|
} else if (t->type == GGML_TYPE_BF16) {
|
|
|
|
tv.push_back(ggml_bf16_to_fp32(*(ggml_bf16_t*)&buf[i]));
|
2023-12-07 21:26:54 +01:00
|
|
|
} else if (t->type == GGML_TYPE_F32) {
|
2023-12-13 13:04:25 +01:00
|
|
|
tv.push_back(*(float *) &buf[i]);
|
2024-10-03 17:29:59 +02:00
|
|
|
} else if (t->type == GGML_TYPE_I64) {
|
|
|
|
tv.push_back((float)*(int64_t *) &buf[i]);
|
2023-12-07 21:26:54 +01:00
|
|
|
} else if (t->type == GGML_TYPE_I32) {
|
2023-12-13 13:04:25 +01:00
|
|
|
tv.push_back((float)*(int32_t *) &buf[i]);
|
2023-12-29 18:07:03 +01:00
|
|
|
} else if (t->type == GGML_TYPE_I16) {
|
|
|
|
tv.push_back((float)*(int16_t *) &buf[i]);
|
|
|
|
} else if (t->type == GGML_TYPE_I8) {
|
|
|
|
tv.push_back((float)*(int8_t *) &buf[i]);
|
2023-12-14 20:05:21 +01:00
|
|
|
} else if (quantized) {
|
2024-10-08 14:21:43 +02:00
|
|
|
tt->to_float(&buf[i], vq.data(), bs);
|
2023-12-13 13:04:25 +01:00
|
|
|
tv.insert(tv.end(), vq.begin(), vq.end());
|
2023-12-07 21:26:54 +01:00
|
|
|
} else {
|
2024-07-27 04:41:55 +02:00
|
|
|
GGML_ABORT("fatal error");
|
2023-12-07 21:26:54 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return tv;
|
|
|
|
}
|
|
|
|
|
|
|
|
// normalized mean squared error = mse(a, b) / mse(a, 0)
|
|
|
|
static double nmse(const float * a, const float * b, size_t n) {
|
|
|
|
double mse_a_b = 0.0;
|
|
|
|
double mse_a_0 = 0.0;
|
|
|
|
|
|
|
|
for (size_t i = 0; i < n; i++) {
|
|
|
|
float a_i = a[i];
|
|
|
|
float b_i = b[i];
|
|
|
|
|
|
|
|
mse_a_b += (a_i - b_i) * (a_i - b_i);
|
|
|
|
mse_a_0 += a_i * a_i;
|
|
|
|
}
|
|
|
|
|
|
|
|
return mse_a_b / mse_a_0;
|
|
|
|
}
|
|
|
|
|
2024-09-03 17:21:46 +02:00
|
|
|
// maximum absolute asymmetry between a and b
|
|
|
|
// asymmetry: (a - b) / (a + b)
|
|
|
|
// This is more stable than relative error if one of the values fluctuates towards zero.
|
|
|
|
// n: number of values to compare.
|
|
|
|
// expected_vals: optional vector of expected values for a. If expected_vals is not empty, filter out all comparisons where
|
|
|
|
// a does not match any of the expected values. Needed for noncontinuous gradients where the numerical calculation can fail.
|
|
|
|
static double mean_abs_asymm(const float * a, const float * b, const size_t n, const std::vector<float> & expected_vals) {
|
|
|
|
double sum = 0.0f;
|
|
|
|
|
|
|
|
size_t nvalid = 0;
|
|
|
|
for (size_t i = 0; i < n; i++) {
|
|
|
|
if (!expected_vals.empty()) {
|
|
|
|
bool matches_any = false;
|
|
|
|
for (const float & ev : expected_vals) {
|
|
|
|
if (fabsf(a[i] - ev) < 1e-3f) {
|
|
|
|
matches_any = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (!matches_any) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
const float asymm = (a[i] - b[i]) / (a[i] + b[i]);
|
|
|
|
|
|
|
|
sum += fabsf(asymm);
|
|
|
|
nvalid++;
|
|
|
|
}
|
|
|
|
|
|
|
|
return sum/nvalid;
|
|
|
|
}
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
// utils for printing the variables of the test cases
|
|
|
|
|
|
|
|
template<typename T>
|
|
|
|
static std::string var_to_str(const T & x) {
|
|
|
|
return std::to_string(x);
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename T, size_t N>
|
|
|
|
static std::string var_to_str(const T (&x)[N]) {
|
|
|
|
std::string s = "[";
|
|
|
|
for (size_t i = 0; i < N; i++) {
|
|
|
|
if (i > 0) {
|
|
|
|
s += ",";
|
|
|
|
}
|
|
|
|
s += var_to_str(x[i]);
|
|
|
|
}
|
|
|
|
s += "]";
|
|
|
|
return s;
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename T, size_t N>
|
|
|
|
static std::string var_to_str(const std::array<T, N> & x) {
|
|
|
|
std::string s = "[";
|
|
|
|
for (size_t i = 0; i < N; i++) {
|
|
|
|
if (i > 0) {
|
|
|
|
s += ",";
|
|
|
|
}
|
|
|
|
s += var_to_str(x[i]);
|
|
|
|
}
|
|
|
|
s += "]";
|
|
|
|
return s;
|
|
|
|
}
|
|
|
|
|
|
|
|
static std::string var_to_str(ggml_type type) {
|
|
|
|
return ggml_type_name(type);
|
|
|
|
}
|
|
|
|
|
2024-01-31 14:10:15 +01:00
|
|
|
static std::string var_to_str(ggml_op_pool pool) {
|
|
|
|
switch (pool) {
|
|
|
|
case GGML_OP_POOL_AVG: return "avg";
|
|
|
|
case GGML_OP_POOL_MAX: return "max";
|
|
|
|
default: return std::to_string(pool);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2024-09-28 14:32:46 +02:00
|
|
|
#define VAR_TO_STR(x) (#x "=" + var_to_str(x))
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
#define VARS_TO_STR1(a) VAR_TO_STR(a)
|
|
|
|
#define VARS_TO_STR2(a, b) VAR_TO_STR(a) + "," + VAR_TO_STR(b)
|
|
|
|
#define VARS_TO_STR3(a, b, c) VAR_TO_STR(a) + "," + VARS_TO_STR2(b, c)
|
|
|
|
#define VARS_TO_STR4(a, b, c, d) VAR_TO_STR(a) + "," + VARS_TO_STR3(b, c, d)
|
|
|
|
#define VARS_TO_STR5(a, b, c, d, e) VAR_TO_STR(a) + "," + VARS_TO_STR4(b, c, d, e)
|
|
|
|
#define VARS_TO_STR6(a, b, c, d, e, f) VAR_TO_STR(a) + "," + VARS_TO_STR5(b, c, d, e, f)
|
|
|
|
#define VARS_TO_STR7(a, b, c, d, e, f, g) VAR_TO_STR(a) + "," + VARS_TO_STR6(b, c, d, e, f, g)
|
|
|
|
#define VARS_TO_STR8(a, b, c, d, e, f, g, h) VAR_TO_STR(a) + "," + VARS_TO_STR7(b, c, d, e, f, g, h)
|
|
|
|
#define VARS_TO_STR9(a, b, c, d, e, f, g, h, i) VAR_TO_STR(a) + "," + VARS_TO_STR8(b, c, d, e, f, g, h, i)
|
|
|
|
#define VARS_TO_STR10(a, b, c, d, e, f, g, h, i, j) VAR_TO_STR(a) + "," + VARS_TO_STR9(b, c, d, e, f, g, h, i, j)
|
|
|
|
#define VARS_TO_STR11(a, b, c, d, e, f, g, h, i, j, k) VAR_TO_STR(a) + "," + VARS_TO_STR10(b, c, d, e, f, g, h, i, j, k)
|
2024-01-31 14:10:15 +01:00
|
|
|
#define VARS_TO_STR12(a, b, c, d, e, f, g, h, i, j, k, l) VAR_TO_STR(a) + "," + VARS_TO_STR11(b, c, d, e, f, g, h, i, j, k, l)
|
2023-12-07 21:26:54 +01:00
|
|
|
|
ggml : add unified SYCL backend for Intel GPUs (#2690)
* first update for migration
* update init_cublas
* add debug functio, commit all help code
* step 1
* step 2
* step3 add fp16, slower 31->28
* add GGML_LIST_DEVICE function
* step 5 format device and print
* step6, enhance error check, remove CUDA macro, enhance device id to fix none-zero id issue
* support main device is non-zero
* step7 add debug for code path, rm log
* step 8, rename all macro & func from cuda by sycl
* fix error of select non-zero device, format device list
* ren ggml-sycl.hpp -> ggml-sycl.h
* clear CMAKE to rm unused lib and options
* correct queue: rm dtct:get_queue
* add print tensor function to debug
* fix error: wrong result in 658746bb26702e50f2c59c0e4ada8e9da6010481
* summary dpct definition in one header file to replace folder:dpct
* refactor device log
* mv dpct definition from folder dpct to ggml-sycl.h
* update readme, refactor build script
* fix build with sycl
* set nthread=1 when sycl, increase performance
* add run script, comment debug code
* add ls-sycl-device tool
* add ls-sycl-device, rm unused files
* rm rear space
* dos2unix
* Update README_sycl.md
* fix return type
* remove sycl version from include path
* restore rm code to fix hang issue
* add syc and link for sycl readme
* rm original sycl code before refactor
* fix code err
* add know issue for pvc hang issue
* enable SYCL_F16 support
* align pr4766
* check for sycl blas, better performance
* cleanup 1
* remove extra endif
* add build&run script, clean CMakefile, update guide by review comments
* rename macro to intel hardware
* editor config format
* format fixes
* format fixes
* editor format fix
* Remove unused headers
* skip build sycl tool for other code path
* replace tab by space
* fix blas matmul function
* fix mac build
* restore hip dependency
* fix conflict
* ren as review comments
* mv internal function to .cpp file
* export funciton print_sycl_devices(), mv class dpct definition to source file
* update CI/action for sycl code, fix CI error of repeat/dup
* fix action ID format issue
* rm unused strategy
* enable llama_f16 in ci
* fix conflict
* fix build break on MacOS, due to CI of MacOS depend on external ggml, instead of internal ggml
* fix ci cases for unsupported data type
* revert unrelated changed in cuda cmake
remove useless nommq
fix typo of GGML_USE_CLBLAS_SYCL
* revert hip cmake changes
* fix indent
* add prefix in func name
* revert no mmq
* rm cpu blas duplicate
* fix no_new_line
* fix src1->type==F16 bug.
* pass batch offset for F16 src1
* fix batch error
* fix wrong code
* revert sycl checking in test-sampling
* pass void as arguments of ggml_backend_sycl_print_sycl_devices
* remove extra blank line in test-sampling
* revert setting n_threads in sycl
* implement std::isinf for icpx with fast math.
* Update ci/run.sh
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update examples/sycl/run-llama2.sh
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update examples/sycl/run-llama2.sh
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update CMakeLists.txt
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update CMakeLists.txt
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update CMakeLists.txt
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update CMakeLists.txt
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* add copyright and MIT license declare
* update the cmd example
---------
Co-authored-by: jianyuzh <jianyu.zhang@intel.com>
Co-authored-by: luoyu-intel <yu.luo@intel.com>
Co-authored-by: Meng, Hengyu <hengyu.meng@intel.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-28 16:56:23 +01:00
|
|
|
#ifdef GGML_USE_SYCL
|
|
|
|
static bool inline _isinf(float f) {
|
|
|
|
return (*(uint32_t *)&f & 0x7fffffff) == 0x7f800000;
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
static bool inline _isinf(float f) { return std::isinf(f); }
|
|
|
|
#endif
|
2023-12-07 21:26:54 +01:00
|
|
|
|
|
|
|
// accept FLT_MAX as infinity
|
|
|
|
static bool isinf_or_max(float f) {
|
ggml : add unified SYCL backend for Intel GPUs (#2690)
* first update for migration
* update init_cublas
* add debug functio, commit all help code
* step 1
* step 2
* step3 add fp16, slower 31->28
* add GGML_LIST_DEVICE function
* step 5 format device and print
* step6, enhance error check, remove CUDA macro, enhance device id to fix none-zero id issue
* support main device is non-zero
* step7 add debug for code path, rm log
* step 8, rename all macro & func from cuda by sycl
* fix error of select non-zero device, format device list
* ren ggml-sycl.hpp -> ggml-sycl.h
* clear CMAKE to rm unused lib and options
* correct queue: rm dtct:get_queue
* add print tensor function to debug
* fix error: wrong result in 658746bb26702e50f2c59c0e4ada8e9da6010481
* summary dpct definition in one header file to replace folder:dpct
* refactor device log
* mv dpct definition from folder dpct to ggml-sycl.h
* update readme, refactor build script
* fix build with sycl
* set nthread=1 when sycl, increase performance
* add run script, comment debug code
* add ls-sycl-device tool
* add ls-sycl-device, rm unused files
* rm rear space
* dos2unix
* Update README_sycl.md
* fix return type
* remove sycl version from include path
* restore rm code to fix hang issue
* add syc and link for sycl readme
* rm original sycl code before refactor
* fix code err
* add know issue for pvc hang issue
* enable SYCL_F16 support
* align pr4766
* check for sycl blas, better performance
* cleanup 1
* remove extra endif
* add build&run script, clean CMakefile, update guide by review comments
* rename macro to intel hardware
* editor config format
* format fixes
* format fixes
* editor format fix
* Remove unused headers
* skip build sycl tool for other code path
* replace tab by space
* fix blas matmul function
* fix mac build
* restore hip dependency
* fix conflict
* ren as review comments
* mv internal function to .cpp file
* export funciton print_sycl_devices(), mv class dpct definition to source file
* update CI/action for sycl code, fix CI error of repeat/dup
* fix action ID format issue
* rm unused strategy
* enable llama_f16 in ci
* fix conflict
* fix build break on MacOS, due to CI of MacOS depend on external ggml, instead of internal ggml
* fix ci cases for unsupported data type
* revert unrelated changed in cuda cmake
remove useless nommq
fix typo of GGML_USE_CLBLAS_SYCL
* revert hip cmake changes
* fix indent
* add prefix in func name
* revert no mmq
* rm cpu blas duplicate
* fix no_new_line
* fix src1->type==F16 bug.
* pass batch offset for F16 src1
* fix batch error
* fix wrong code
* revert sycl checking in test-sampling
* pass void as arguments of ggml_backend_sycl_print_sycl_devices
* remove extra blank line in test-sampling
* revert setting n_threads in sycl
* implement std::isinf for icpx with fast math.
* Update ci/run.sh
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update examples/sycl/run-llama2.sh
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update examples/sycl/run-llama2.sh
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update CMakeLists.txt
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update CMakeLists.txt
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update CMakeLists.txt
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update CMakeLists.txt
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* add copyright and MIT license declare
* update the cmd example
---------
Co-authored-by: jianyuzh <jianyu.zhang@intel.com>
Co-authored-by: luoyu-intel <yu.luo@intel.com>
Co-authored-by: Meng, Hengyu <hengyu.meng@intel.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-28 16:56:23 +01:00
|
|
|
return _isinf(f) || f == FLT_MAX || f == -FLT_MAX;
|
2023-12-07 21:26:54 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
static bool ggml_is_view_op(enum ggml_op op) {
|
|
|
|
return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
|
|
|
|
}
|
|
|
|
|
2023-12-13 20:54:54 +01:00
|
|
|
enum test_mode {
|
|
|
|
MODE_TEST,
|
|
|
|
MODE_PERF,
|
2024-09-03 17:21:46 +02:00
|
|
|
MODE_GRAD,
|
2023-12-13 20:54:54 +01:00
|
|
|
};
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
struct test_case {
|
|
|
|
virtual ~test_case() {}
|
|
|
|
|
2023-12-13 13:04:25 +01:00
|
|
|
virtual std::string op_desc(ggml_tensor * t) {
|
|
|
|
return ggml_op_desc(t);
|
|
|
|
}
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
virtual std::string vars() {
|
|
|
|
return "";
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual ggml_tensor * build_graph(ggml_context * ctx) = 0;
|
|
|
|
|
|
|
|
virtual double max_nmse_err() {
|
2023-12-13 13:04:25 +01:00
|
|
|
return 1e-7;
|
2023-12-07 21:26:54 +01:00
|
|
|
}
|
|
|
|
|
2024-09-03 17:21:46 +02:00
|
|
|
virtual double max_maa_err() {
|
|
|
|
return 1e-4;
|
|
|
|
}
|
|
|
|
|
2024-09-28 14:32:46 +02:00
|
|
|
virtual float grad_eps() {
|
2024-09-03 17:21:46 +02:00
|
|
|
return 1e-1f;
|
|
|
|
}
|
|
|
|
|
|
|
|
// If false, estimate gradient with 2 points, neglects 3rd order derivative and higher.
|
|
|
|
// If true, estimate gradient with 4 points, neglects 5th order derivative and higher.
|
2024-09-28 14:32:46 +02:00
|
|
|
virtual bool grad_precise() {
|
2024-09-03 17:21:46 +02:00
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Skip gradient checks if total number of gradients to be checked is larger than this (to speed up the tests).
|
|
|
|
virtual int64_t grad_nmax() {
|
|
|
|
return 10000;
|
|
|
|
}
|
|
|
|
|
|
|
|
// No effect if empty.
|
|
|
|
// If not empty, skip all gradient checks where the numerical result does not match any of the values.
|
|
|
|
// Needed for dealing with noncontinuous gradients (e.g. ReLU) where estimation using finite differences is unreliable.
|
|
|
|
virtual std::vector<float> grad_expect() {
|
|
|
|
return {};
|
|
|
|
}
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
virtual void initialize_tensors(ggml_context * ctx) {
|
|
|
|
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) {
|
|
|
|
init_tensor_uniform(t);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual size_t op_size(ggml_tensor * t) {
|
|
|
|
size_t size = ggml_nbytes(t);
|
|
|
|
// add source tensors
|
|
|
|
for (int i = 0; i < GGML_MAX_SRC; i++) {
|
|
|
|
if (t->src[i] != NULL) {
|
|
|
|
size += ggml_nbytes(t->src[i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return size;
|
|
|
|
}
|
|
|
|
|
2024-09-28 14:32:46 +02:00
|
|
|
virtual uint64_t op_flops(ggml_tensor * t) {
|
|
|
|
GGML_UNUSED(t);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2023-12-13 20:54:54 +01:00
|
|
|
ggml_cgraph * gf = nullptr;
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_cgraph * gb = nullptr;
|
2023-12-13 20:54:54 +01:00
|
|
|
|
|
|
|
static const int sentinel_size = 1024;
|
|
|
|
|
|
|
|
test_mode mode;
|
|
|
|
|
|
|
|
std::vector<ggml_tensor *> sentinels;
|
|
|
|
|
|
|
|
void add_sentinel(ggml_context * ctx) {
|
2024-09-03 17:21:46 +02:00
|
|
|
if (mode == MODE_PERF || mode == MODE_GRAD) {
|
2023-12-13 20:54:54 +01:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
ggml_tensor * sentinel = ::ggml_new_tensor_1d(ctx, GGML_TYPE_F32, sentinel_size);
|
|
|
|
ggml_format_name(sentinel, "sent_%zu", sentinels.size());
|
|
|
|
sentinels.push_back(sentinel);
|
|
|
|
}
|
|
|
|
|
|
|
|
// hijack ggml_new_tensor to add sentinels after each tensor to check for overflows in the backend
|
|
|
|
|
|
|
|
ggml_tensor * ggml_new_tensor(ggml_context * ctx, ggml_type type, int n_dims, const int64_t * ne) {
|
|
|
|
ggml_tensor * t = ::ggml_new_tensor(ctx, type, n_dims, ne);
|
|
|
|
add_sentinel(ctx);
|
|
|
|
return t;
|
|
|
|
}
|
|
|
|
|
|
|
|
ggml_tensor * ggml_new_tensor_1d(ggml_context * ctx, ggml_type type, int64_t ne0) {
|
|
|
|
ggml_tensor * t = ::ggml_new_tensor_1d(ctx, type, ne0);
|
|
|
|
add_sentinel(ctx);
|
|
|
|
return t;
|
|
|
|
}
|
|
|
|
|
|
|
|
ggml_tensor * ggml_new_tensor_2d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1) {
|
|
|
|
ggml_tensor * t = ::ggml_new_tensor_2d(ctx, type, ne0, ne1);
|
|
|
|
add_sentinel(ctx);
|
|
|
|
return t;
|
|
|
|
}
|
|
|
|
|
|
|
|
ggml_tensor * ggml_new_tensor_3d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2) {
|
|
|
|
ggml_tensor * t = ::ggml_new_tensor_3d(ctx, type, ne0, ne1, ne2);
|
|
|
|
add_sentinel(ctx);
|
|
|
|
return t;
|
|
|
|
}
|
|
|
|
|
|
|
|
ggml_tensor * ggml_new_tensor_4d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) {
|
|
|
|
ggml_tensor * t = ::ggml_new_tensor_4d(ctx, type, ne0, ne1, ne2, ne3);
|
|
|
|
add_sentinel(ctx);
|
|
|
|
return t;
|
|
|
|
}
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
bool eval(ggml_backend_t backend1, ggml_backend_t backend2, const char * op_name) {
|
2023-12-13 20:54:54 +01:00
|
|
|
mode = MODE_TEST;
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
ggml_init_params params = {
|
|
|
|
/* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
|
|
|
|
/* .mem_base = */ NULL,
|
|
|
|
/* .no_alloc = */ true,
|
|
|
|
};
|
|
|
|
ggml_context * ctx = ggml_init(params);
|
2024-09-03 17:21:46 +02:00
|
|
|
GGML_ASSERT(ctx);
|
2023-12-07 21:26:54 +01:00
|
|
|
|
2023-12-13 20:54:54 +01:00
|
|
|
gf = ggml_new_graph(ctx);
|
|
|
|
|
|
|
|
// pre-graph sentinel
|
|
|
|
add_sentinel(ctx);
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
ggml_tensor * out = build_graph(ctx);
|
|
|
|
|
2023-12-13 13:04:25 +01:00
|
|
|
if (op_name != nullptr && op_desc(out) != op_name) {
|
|
|
|
//printf(" %s: skipping\n", op_desc(out).c_str());
|
2023-12-07 21:26:54 +01:00
|
|
|
ggml_free(ctx);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2023-12-13 13:04:25 +01:00
|
|
|
printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str());
|
2023-12-07 21:26:54 +01:00
|
|
|
fflush(stdout);
|
|
|
|
|
2024-01-29 21:50:50 +01:00
|
|
|
// check if the backends support the ops
|
2023-12-29 09:32:31 +01:00
|
|
|
bool supported = true;
|
2023-12-07 21:26:54 +01:00
|
|
|
for (ggml_backend_t backend : {backend1, backend2}) {
|
2024-01-29 21:50:50 +01:00
|
|
|
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
|
|
|
if (!ggml_backend_supports_op(backend, t)) {
|
|
|
|
printf("not supported [%s] ", ggml_backend_name(backend));
|
|
|
|
supported = false;
|
|
|
|
break;
|
|
|
|
}
|
2023-12-07 21:26:54 +01:00
|
|
|
}
|
|
|
|
}
|
2023-12-29 09:32:31 +01:00
|
|
|
if (!supported) {
|
|
|
|
printf("\n");
|
|
|
|
ggml_free(ctx);
|
|
|
|
return true;
|
|
|
|
}
|
2023-12-07 21:26:54 +01:00
|
|
|
|
2023-12-13 20:54:54 +01:00
|
|
|
// post-graph sentinel
|
|
|
|
add_sentinel(ctx);
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
// allocate
|
|
|
|
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend1);
|
2024-01-12 20:07:38 +01:00
|
|
|
if (buf == NULL) {
|
|
|
|
printf("failed to allocate tensors [%s] ", ggml_backend_name(backend1));
|
|
|
|
ggml_free(ctx);
|
|
|
|
return false;
|
|
|
|
}
|
2023-12-07 21:26:54 +01:00
|
|
|
|
|
|
|
// build graph
|
|
|
|
ggml_build_forward_expand(gf, out);
|
|
|
|
|
2023-12-13 20:54:54 +01:00
|
|
|
// add sentinels as graph nodes so that they are checked in the callback
|
|
|
|
for (ggml_tensor * sentinel : sentinels) {
|
2024-09-12 13:23:49 +02:00
|
|
|
ggml_graph_add_node(gf, sentinel);
|
2023-12-13 20:54:54 +01:00
|
|
|
}
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
// randomize tensors
|
|
|
|
initialize_tensors(ctx);
|
|
|
|
|
|
|
|
// compare
|
|
|
|
struct callback_userdata {
|
|
|
|
bool ok;
|
|
|
|
double max_err;
|
2024-01-04 09:43:23 +01:00
|
|
|
ggml_backend_t backend1;
|
|
|
|
ggml_backend_t backend2;
|
2023-12-07 21:26:54 +01:00
|
|
|
};
|
|
|
|
|
|
|
|
callback_userdata ud {
|
|
|
|
true,
|
|
|
|
max_nmse_err(),
|
2024-01-04 09:43:23 +01:00
|
|
|
backend1,
|
|
|
|
backend2
|
2023-12-07 21:26:54 +01:00
|
|
|
};
|
|
|
|
|
|
|
|
auto callback = [](int index, ggml_tensor * t1, ggml_tensor * t2, void * user_data) -> bool {
|
2023-12-13 20:54:54 +01:00
|
|
|
callback_userdata * ud = (callback_userdata *) user_data;
|
2024-01-04 09:43:23 +01:00
|
|
|
const char * bn1 = ggml_backend_name(ud->backend1);
|
|
|
|
const char * bn2 = ggml_backend_name(ud->backend2);
|
2023-12-13 20:54:54 +01:00
|
|
|
|
|
|
|
if (t1->op == GGML_OP_NONE) {
|
|
|
|
// sentinels must be unchanged
|
|
|
|
std::vector<uint8_t> t1_data(ggml_nbytes(t1));
|
|
|
|
std::vector<uint8_t> t2_data(ggml_nbytes(t2));
|
|
|
|
ggml_backend_tensor_get(t1, t1_data.data(), 0, ggml_nbytes(t1));
|
|
|
|
ggml_backend_tensor_get(t2, t2_data.data(), 0, ggml_nbytes(t2));
|
|
|
|
|
|
|
|
if (memcmp(t1_data.data(), t2_data.data(), ggml_nbytes(t1)) != 0) {
|
|
|
|
printf("sentinel mismatch: %s ", t1->name);
|
|
|
|
ud->ok = false;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
std::vector<float> f1 = tensor_to_float(t1);
|
|
|
|
std::vector<float> f2 = tensor_to_float(t2);
|
|
|
|
|
|
|
|
for (size_t i = 0; i < f1.size(); i++) {
|
|
|
|
// check for nans
|
|
|
|
if (std::isnan(f1[i]) || std::isnan(f2[i])) {
|
2024-01-04 09:43:23 +01:00
|
|
|
printf("[%s] NaN at index %zu (%s=%f %s=%f) ", ggml_op_desc(t1), i, bn1, f1[i], bn2, f2[i]);
|
2023-12-07 21:26:54 +01:00
|
|
|
ud->ok = false;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
// check for infs: both must be inf of the same sign, or both must be finite
|
|
|
|
if (isinf_or_max(f1[i]) || isinf_or_max(f2[i])) {
|
|
|
|
if (isinf_or_max(f1[i]) && isinf_or_max(f2[i])) {
|
|
|
|
if (std::signbit(f1[i]) != std::signbit(f2[i])) {
|
2024-01-04 09:43:23 +01:00
|
|
|
printf("[%s] inf sign mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
|
2023-12-07 21:26:54 +01:00
|
|
|
ud->ok = false;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
} else {
|
2024-01-04 09:43:23 +01:00
|
|
|
printf("[%s] inf mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
|
2023-12-07 21:26:54 +01:00
|
|
|
ud->ok = false;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
double err = nmse(f1.data(), f2.data(), f1.size());
|
|
|
|
if (err > ud->max_err) {
|
2024-01-09 08:58:55 +01:00
|
|
|
printf("[%s] NMSE = %.9f > %.9f ", ggml_op_desc(t1), err, ud->max_err);
|
2024-01-02 09:57:44 +01:00
|
|
|
//for (int i = 0; i < (int) f1.size(); i++) {
|
2023-12-13 20:54:54 +01:00
|
|
|
// printf("%5d %9.6f %9.6f, diff = %9.6f\n", i, f1[i], f2[i], f1[i] - f2[i]);
|
2023-12-13 13:04:25 +01:00
|
|
|
//}
|
|
|
|
//printf("\n");
|
2023-12-13 20:54:54 +01:00
|
|
|
//exit(1);
|
2023-12-07 21:26:54 +01:00
|
|
|
ud->ok = false;
|
|
|
|
}
|
|
|
|
return true;
|
2023-12-13 13:04:25 +01:00
|
|
|
|
|
|
|
GGML_UNUSED(index);
|
2023-12-07 21:26:54 +01:00
|
|
|
};
|
|
|
|
|
2024-01-12 20:07:38 +01:00
|
|
|
const bool cmp_ok = ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud);
|
2023-12-07 21:26:54 +01:00
|
|
|
|
2024-01-12 20:07:38 +01:00
|
|
|
if (!cmp_ok) {
|
|
|
|
printf("compare failed ");
|
2023-12-07 21:26:54 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
ggml_backend_buffer_free(buf);
|
|
|
|
|
|
|
|
ggml_free(ctx);
|
|
|
|
|
2024-01-12 20:07:38 +01:00
|
|
|
if (ud.ok && cmp_ok) {
|
|
|
|
printf("\033[1;32mOK\033[0m\n");
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
printf("\033[1;31mFAIL\033[0m\n");
|
|
|
|
return false;
|
2023-12-07 21:26:54 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
bool eval_perf(ggml_backend_t backend, const char * op_name) {
|
2023-12-13 20:54:54 +01:00
|
|
|
mode = MODE_PERF;
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
static const size_t graph_nodes = 8192;
|
|
|
|
|
|
|
|
ggml_init_params params = {
|
|
|
|
/* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
|
|
|
|
/* .mem_base = */ NULL,
|
|
|
|
/* .no_alloc = */ true,
|
|
|
|
};
|
|
|
|
ggml_context * ctx = ggml_init(params);
|
2024-09-03 17:21:46 +02:00
|
|
|
GGML_ASSERT(ctx);
|
2023-12-07 21:26:54 +01:00
|
|
|
|
|
|
|
ggml_tensor * out = build_graph(ctx);
|
|
|
|
|
2023-12-13 13:04:25 +01:00
|
|
|
if (op_name != nullptr && op_desc(out) != op_name) {
|
|
|
|
//printf(" %s: skipping\n", op_desc(out).c_str());
|
2023-12-07 21:26:54 +01:00
|
|
|
ggml_free(ctx);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2023-12-13 13:04:25 +01:00
|
|
|
int len = printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str());
|
2023-12-07 21:26:54 +01:00
|
|
|
fflush(stdout);
|
|
|
|
|
|
|
|
// check if backends support op
|
|
|
|
if (!ggml_backend_supports_op(backend, out)) {
|
|
|
|
printf("not supported\n");
|
|
|
|
ggml_free(ctx);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// align while also leaving some margin for variations in parameters
|
2024-09-28 14:32:46 +02:00
|
|
|
int align = 8;
|
2023-12-07 21:26:54 +01:00
|
|
|
int last = (len + align - 1) / align * align;
|
|
|
|
if (last - len < 5) {
|
|
|
|
last += align;
|
|
|
|
}
|
|
|
|
printf("%*s", last - len, "");
|
|
|
|
|
|
|
|
// allocate
|
|
|
|
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend);
|
2024-01-12 20:07:38 +01:00
|
|
|
if (buf == NULL) {
|
|
|
|
printf("failed to allocate tensors\n");
|
|
|
|
ggml_free(ctx);
|
|
|
|
return false;
|
|
|
|
}
|
2023-12-07 21:26:54 +01:00
|
|
|
|
|
|
|
// randomize tensors
|
|
|
|
initialize_tensors(ctx);
|
|
|
|
|
|
|
|
// build graph
|
|
|
|
ggml_cgraph * gf = ggml_new_graph_custom(ctx, graph_nodes, false);
|
|
|
|
ggml_build_forward_expand(gf, out);
|
|
|
|
|
|
|
|
// warmup run
|
|
|
|
ggml_backend_graph_compute(backend, gf);
|
|
|
|
|
2024-09-28 14:32:46 +02:00
|
|
|
// determine number of runs
|
|
|
|
int n_runs;
|
2024-11-25 15:13:39 +01:00
|
|
|
bool is_cpu = ggml_backend_dev_type(ggml_backend_get_device(backend)) == GGML_BACKEND_DEVICE_TYPE_CPU;
|
2024-09-28 14:32:46 +02:00
|
|
|
if (op_flops(out) > 0) {
|
|
|
|
// based on flops
|
|
|
|
const uint64_t GFLOP = 1000 * 1000 * 1000;
|
|
|
|
const uint64_t target_flops_cpu = 8ULL * GFLOP;
|
|
|
|
const uint64_t target_flops_gpu = 100ULL * GFLOP;
|
2024-11-25 15:13:39 +01:00
|
|
|
uint64_t target_flops = is_cpu ? target_flops_cpu : target_flops_gpu;
|
2024-09-28 14:32:46 +02:00
|
|
|
n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_flops / op_flops(out)) + 1;
|
|
|
|
} else {
|
|
|
|
// based on memory size
|
|
|
|
const size_t GB = 1ULL << 30;
|
|
|
|
const size_t target_size_cpu = 8 * GB;
|
|
|
|
const size_t target_size_gpu = 32 * GB;
|
2024-11-25 15:13:39 +01:00
|
|
|
size_t target_size = is_cpu ? target_size_cpu : target_size_gpu;
|
2024-09-28 14:32:46 +02:00
|
|
|
n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_size / op_size(out)) + 1;
|
|
|
|
}
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
// duplicate the op
|
|
|
|
for (int i = 1; i < n_runs; i++) {
|
2024-09-12 13:23:49 +02:00
|
|
|
ggml_graph_add_node(gf, out);
|
2023-12-07 21:26:54 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
// calculate memory
|
|
|
|
size_t mem = n_runs * op_size(out);
|
|
|
|
auto tensor_op_size = [](ggml_tensor * t) {
|
|
|
|
size_t size = ggml_nbytes(t);
|
|
|
|
// add source tensors
|
|
|
|
for (int i = 0; i < GGML_MAX_SRC; i++) {
|
|
|
|
if (t->src[i] != NULL) {
|
|
|
|
size += ggml_nbytes(t->src[i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return size;
|
|
|
|
};
|
2024-09-12 13:23:49 +02:00
|
|
|
for (int i = 0; i < ggml_graph_n_nodes(gf); ++i) {
|
|
|
|
if (ggml_is_view_op(ggml_graph_node(gf, i)->op) || ggml_graph_node(gf, i) == out) {
|
2023-12-07 21:26:54 +01:00
|
|
|
continue;
|
2023-12-13 13:04:25 +01:00
|
|
|
}
|
2024-09-12 13:23:49 +02:00
|
|
|
mem += tensor_op_size(ggml_graph_node(gf, i));
|
2023-12-07 21:26:54 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
// run
|
2024-09-28 14:32:46 +02:00
|
|
|
int64_t total_time_us = 0;
|
2024-11-13 07:58:57 +01:00
|
|
|
int64_t total_mem = 0;
|
2024-09-28 14:32:46 +02:00
|
|
|
int total_runs = 0;
|
|
|
|
do {
|
|
|
|
int64_t start_time = ggml_time_us();
|
|
|
|
ggml_backend_graph_compute(backend, gf);
|
|
|
|
int64_t end_time = ggml_time_us();
|
|
|
|
|
|
|
|
total_time_us += end_time - start_time;
|
2024-11-13 07:58:57 +01:00
|
|
|
total_mem += mem;
|
2024-09-28 14:32:46 +02:00
|
|
|
total_runs += n_runs;
|
|
|
|
} while (total_time_us < 1000*1000); // run for at least 1 second
|
|
|
|
|
|
|
|
printf(" %8d runs - %8.2f us/run - ",
|
|
|
|
total_runs,
|
|
|
|
(double)total_time_us / total_runs);
|
|
|
|
|
|
|
|
if (op_flops(out) > 0) {
|
|
|
|
double flops_per_sec = (op_flops(out) * total_runs) / (total_time_us / 1e6);
|
|
|
|
auto format_flops = [](double flops) -> std::string {
|
|
|
|
char buf[256];
|
|
|
|
if (flops >= 1e12) {
|
|
|
|
snprintf(buf, sizeof(buf), "%6.2f TFLOP", flops / 1e12);
|
|
|
|
} else if (flops >= 1e9) {
|
|
|
|
snprintf(buf, sizeof(buf), "%6.2f GFLOP", flops / 1e9);
|
|
|
|
} else if (flops >= 1e6) {
|
|
|
|
snprintf(buf, sizeof(buf), "%6.2f MFLOP", flops / 1e6);
|
|
|
|
} else {
|
|
|
|
snprintf(buf, sizeof(buf), "%6.2f KFLOP", flops / 1e3);
|
|
|
|
}
|
|
|
|
return buf;
|
|
|
|
};
|
|
|
|
printf("%s/run - \033[1;34m%sS\033[0m",
|
|
|
|
format_flops(op_flops(out)).c_str(),
|
|
|
|
format_flops(flops_per_sec).c_str());
|
2023-12-07 21:26:54 +01:00
|
|
|
|
2024-09-28 14:32:46 +02:00
|
|
|
} else {
|
|
|
|
printf("%8zu kB/run - \033[1;34m%7.2f GB/s\033[0m",
|
|
|
|
op_size(out) / 1024,
|
2024-11-13 07:58:57 +01:00
|
|
|
total_mem / (total_time_us / 1e6) / 1024.0 / 1024.0 / 1024.0);
|
2024-09-28 14:32:46 +02:00
|
|
|
}
|
|
|
|
printf("\n");
|
2023-12-07 21:26:54 +01:00
|
|
|
|
|
|
|
ggml_backend_buffer_free(buf);
|
|
|
|
|
|
|
|
ggml_free(ctx);
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
2024-09-03 17:21:46 +02:00
|
|
|
|
|
|
|
bool eval_grad(ggml_backend_t backend, const char * op_name) {
|
|
|
|
mode = MODE_GRAD;
|
|
|
|
const std::vector<float> expect = grad_expect();
|
|
|
|
|
|
|
|
ggml_init_params params = {
|
|
|
|
/* .mem_size = */ ggml_tensor_overhead()*128 + 2*ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, true),
|
|
|
|
/* .mem_base = */ NULL,
|
|
|
|
/* .no_alloc = */ true,
|
|
|
|
};
|
|
|
|
ggml_context * ctx = ggml_init(params);
|
|
|
|
GGML_ASSERT(ctx);
|
|
|
|
|
|
|
|
gf = ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, true);
|
|
|
|
gb = ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, true);
|
|
|
|
|
|
|
|
ggml_tensor * out = build_graph(ctx);
|
|
|
|
|
2024-09-29 23:18:02 +02:00
|
|
|
if ((op_name != nullptr && op_desc(out) != op_name) || out->op == GGML_OP_OPT_STEP_ADAMW) {
|
2024-09-03 17:21:46 +02:00
|
|
|
//printf(" %s: skipping\n", op_desc(out).c_str());
|
|
|
|
ggml_free(ctx);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str());
|
|
|
|
fflush(stdout);
|
|
|
|
|
|
|
|
if (out->type != GGML_TYPE_F32) {
|
|
|
|
ggml_free(ctx);
|
|
|
|
printf("not supported [%s->type != FP32]\n", out->name);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// check if the backend supports the ops
|
|
|
|
bool supported = true;
|
2024-09-29 23:18:02 +02:00
|
|
|
bool any_params = false;
|
2024-09-03 17:21:46 +02:00
|
|
|
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
|
|
|
if (!ggml_backend_supports_op(backend, t)) {
|
|
|
|
printf("not supported [%s] ", ggml_backend_name(backend));
|
|
|
|
supported = false;
|
|
|
|
break;
|
|
|
|
}
|
2024-09-29 23:18:02 +02:00
|
|
|
if ((t->flags & GGML_TENSOR_FLAG_PARAM)) {
|
|
|
|
any_params = true;
|
|
|
|
if (t->type != GGML_TYPE_F32) {
|
|
|
|
printf("not supported [%s->type != FP32] ", t->name);
|
|
|
|
supported = false;
|
|
|
|
break;
|
|
|
|
}
|
2024-09-03 17:21:46 +02:00
|
|
|
}
|
|
|
|
}
|
2024-09-29 23:18:02 +02:00
|
|
|
if (!any_params) {
|
|
|
|
printf("not supported [%s] \n", op_name);
|
|
|
|
supported = false;
|
|
|
|
}
|
2024-09-03 17:21:46 +02:00
|
|
|
if (!supported) {
|
|
|
|
printf("\n");
|
|
|
|
ggml_free(ctx);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
int64_t ngrads = 0;
|
|
|
|
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
|
|
|
if (t->flags & GGML_TENSOR_FLAG_PARAM) {
|
|
|
|
ngrads += ggml_nelements(t);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (ngrads > grad_nmax()) {
|
|
|
|
printf("skipping large tensors for speed \n");
|
|
|
|
ggml_free(ctx);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
if (!ggml_is_scalar(out)) {
|
|
|
|
out = ggml_sum(ctx, out);
|
|
|
|
ggml_set_name(out, "sum_of_out");
|
|
|
|
}
|
2024-09-20 18:04:44 +02:00
|
|
|
ggml_set_loss(out);
|
2024-09-03 17:21:46 +02:00
|
|
|
|
|
|
|
ggml_build_forward_expand(gf, out);
|
|
|
|
ggml_graph_cpy(gf, gb);
|
2024-11-16 21:17:59 +01:00
|
|
|
ggml_build_backward_expand(ctx, ctx, gb, false);
|
2024-09-03 17:21:46 +02:00
|
|
|
if (expect.size() != 1 || expect[0] != 0.0f) {
|
2024-09-12 13:23:49 +02:00
|
|
|
GGML_ASSERT(ggml_graph_n_nodes(gb) > ggml_graph_n_nodes(gf));
|
2024-09-03 17:21:46 +02:00
|
|
|
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
2024-11-16 21:17:59 +01:00
|
|
|
GGML_ASSERT(!(t->flags & GGML_TENSOR_FLAG_PARAM) || ggml_graph_get_grad(gb, t)->op != GGML_OP_NONE);
|
2024-09-03 17:21:46 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
|
|
|
if (!ggml_backend_supports_op(backend, t)) {
|
|
|
|
printf("not supported [%s] ", ggml_backend_name(backend));
|
|
|
|
supported = false;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if ((t->flags & GGML_TENSOR_FLAG_PARAM) && t->type != GGML_TYPE_F32) {
|
|
|
|
printf("not supported [%s->type != FP32] ", t->name);
|
|
|
|
supported = false;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (!supported) {
|
|
|
|
printf("\n");
|
|
|
|
ggml_free(ctx);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// allocate
|
|
|
|
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend);
|
|
|
|
if (buf == NULL) {
|
|
|
|
printf("failed to allocate tensors [%s] ", ggml_backend_name(backend));
|
|
|
|
ggml_free(ctx);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2024-09-20 18:04:44 +02:00
|
|
|
initialize_tensors(ctx); // Randomizes all tensors (including gradients).
|
|
|
|
ggml_graph_reset(gb); // Sets gradients to 1 if loss, 0 otherwise.
|
2024-09-03 17:21:46 +02:00
|
|
|
|
|
|
|
ggml_backend_graph_compute(backend, gf);
|
|
|
|
ggml_backend_graph_compute(backend, gb);
|
|
|
|
|
|
|
|
bool ok = true;
|
|
|
|
for (struct ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) {
|
|
|
|
if (!(t->flags & GGML_TENSOR_FLAG_PARAM)) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
const char * bn = ggml_backend_name(backend);
|
|
|
|
const int64_t ne = ggml_nelements(t);
|
|
|
|
|
2024-11-16 21:17:59 +01:00
|
|
|
std::vector<float> ga;
|
|
|
|
struct ggml_tensor * grad = ggml_graph_get_grad(gb, t);
|
|
|
|
if (grad) {
|
|
|
|
ga = tensor_to_float(grad);
|
|
|
|
} else {
|
|
|
|
ga.resize(ne); // default value is 0.0f
|
|
|
|
}
|
2024-09-03 17:21:46 +02:00
|
|
|
|
|
|
|
for (int64_t i = 0; i < ne; ++i) { // gradient algebraic
|
|
|
|
// check for nans
|
|
|
|
if (!std::isfinite(ga[i])) {
|
2024-09-08 08:57:57 +02:00
|
|
|
printf("[%s] nonfinite gradient at index %" PRId64 " (%s=%f) ", ggml_op_desc(t), i, bn, ga[i]);
|
2024-09-03 17:21:46 +02:00
|
|
|
ok = false;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (!ok) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<float> gn(ne); // gradient numeric
|
|
|
|
GGML_ASSERT(ga.size() == gn.size());
|
|
|
|
|
|
|
|
std::vector<float> x0 = tensor_to_float(t); // original t data
|
|
|
|
GGML_ASSERT(ggml_is_scalar(out));
|
|
|
|
GGML_ASSERT(out->type == GGML_TYPE_F32);
|
|
|
|
|
|
|
|
const float eps = grad_eps();
|
|
|
|
for (int64_t i = 0; i < ne; ++i) {
|
|
|
|
const float xiu = x0[i] + 1.0f*eps; // x, index i, up
|
|
|
|
const float xiuh = x0[i] + 0.5f*eps; // x, index i, up half
|
|
|
|
const float xidh = x0[i] - 0.5f*eps; // x, index i, down half
|
|
|
|
const float xid = x0[i] - 1.0f*eps; // x, index i, down
|
|
|
|
|
|
|
|
float fu, fuh, fdh, fd; // output values for xiu, xiuh, xid, xidh
|
|
|
|
|
|
|
|
ggml_backend_tensor_set(t, &xiu, i*sizeof(float), sizeof(float));
|
|
|
|
ggml_backend_graph_compute(backend, gf);
|
|
|
|
ggml_backend_tensor_get(out, &fu, 0, ggml_nbytes(out));
|
|
|
|
|
|
|
|
ggml_backend_tensor_set(t, &xid, i*sizeof(float), sizeof(float));
|
|
|
|
ggml_backend_graph_compute(backend, gf);
|
|
|
|
ggml_backend_tensor_get(out, &fd, 0, ggml_nbytes(out));
|
|
|
|
|
|
|
|
if (grad_precise()) {
|
|
|
|
ggml_backend_tensor_set(t, &xiuh, i*sizeof(float), sizeof(float));
|
|
|
|
ggml_backend_graph_compute(backend, gf);
|
|
|
|
ggml_backend_tensor_get(out, &fuh, 0, ggml_nbytes(out));
|
|
|
|
|
|
|
|
ggml_backend_tensor_set(t, &xidh, i*sizeof(float), sizeof(float));
|
|
|
|
ggml_backend_graph_compute(backend, gf);
|
|
|
|
ggml_backend_tensor_get(out, &fdh, 0, ggml_nbytes(out));
|
|
|
|
|
|
|
|
gn[i] = (8.0*(double)fuh + (double)fd - (8.0*(double)fdh + (double)fu)) / (6.0*(double)eps);
|
|
|
|
} else {
|
|
|
|
gn[i] = (fu - fd) / (2.0f*eps);
|
|
|
|
}
|
|
|
|
|
|
|
|
ggml_backend_tensor_set(t, x0.data(), 0, ggml_nbytes(t));
|
|
|
|
}
|
|
|
|
|
|
|
|
const double err = mean_abs_asymm(gn.data(), ga.data(), gn.size(), expect);
|
|
|
|
if (err > max_maa_err()) {
|
|
|
|
printf("[%s] MAA = %.9f > %.9f ", ggml_op_desc(t), err, max_maa_err());
|
|
|
|
ok = false;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if (!ok) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!ok) {
|
|
|
|
printf("compare failed ");
|
|
|
|
}
|
|
|
|
|
|
|
|
ggml_backend_buffer_free(buf);
|
|
|
|
|
|
|
|
ggml_free(ctx);
|
|
|
|
|
|
|
|
if (ok) {
|
|
|
|
printf("\033[1;32mOK\033[0m\n");
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
printf("\033[1;31mFAIL\033[0m\n");
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
// ###################################
|
|
|
|
// ## Section 2: GGML Op Defintions ##
|
|
|
|
// ###################################
|
|
|
|
|
|
|
|
|
|
|
|
// The following is an example showing the bare minimum for creating a test for a GGML op.
|
|
|
|
|
|
|
|
// GGML_OP_EXAMPLE
|
|
|
|
struct test_example : public test_case {
|
|
|
|
// Always define these 2 or variants thereof:
|
|
|
|
const ggml_type type; // The type of the input tensors.
|
|
|
|
const std::array<int64_t, 4> ne; // The shape of the input tensors.
|
|
|
|
// For some ops it's necessary to define multiple types or shapes for the inputs.
|
|
|
|
// Or they may need additional parameters.
|
|
|
|
|
|
|
|
// Put all parameters needed to fully define the test into one of the VARS_TO_STR macros.
|
|
|
|
// In most cases these are just the properties of the struct that you defined above.
|
|
|
|
// This is needed for info prints.
|
|
|
|
std::string vars() override {
|
|
|
|
return VARS_TO_STR2(type, ne);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Define a constructor for the struct.
|
|
|
|
// In most cases it will be sufficient to have the same arguments as the struct has properties
|
|
|
|
// and just use initializer lists.
|
|
|
|
test_example(ggml_type type = GGML_TYPE_F32,
|
|
|
|
std::array<int64_t, 4> ne = {10, 5, 4, 3})
|
|
|
|
: type(type), ne(ne) {}
|
|
|
|
|
|
|
|
// Define how a simple GGML compute graph can be constructed for the new GGML op.
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
|
|
// Step 1: create input tensors that don't depend on any other tensors:
|
|
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
|
|
|
|
ggml_set_name(a, "a"); // Setting names is optional but it's useful for debugging.
|
|
|
|
|
|
|
|
ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
|
|
|
|
ggml_set_name(b, "b");
|
|
|
|
|
|
|
|
// Step 2: use the op that you want to test in the GGML compute graph.
|
|
|
|
ggml_tensor * out = ggml_add(ctx, a, b); // For this example we're just doing a simple addition.
|
|
|
|
ggml_set_name(out, "out");
|
|
|
|
|
|
|
|
// Step 3: return the output tensor.
|
|
|
|
return out;
|
|
|
|
}
|
|
|
|
// In order to also check the gradients for your op, add calls like ggml_set_param(ctx, a)
|
|
|
|
// immediately after you create the tensors.
|
2024-09-29 23:18:02 +02:00
|
|
|
// This is optional and only makes sense if a backward pass has actually been implemented for the new op.
|
2023-12-07 21:26:54 +01:00
|
|
|
};
|
|
|
|
|
2024-09-03 17:21:46 +02:00
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
// GGML_OP_UNARY
|
|
|
|
struct test_unary : public test_case {
|
|
|
|
const ggml_unary_op op;
|
|
|
|
const ggml_type type;
|
2024-06-12 15:00:22 +02:00
|
|
|
const std::array<int64_t, 4> ne_a;
|
|
|
|
int v; // view (1 : non-contiguous a)
|
2023-12-07 21:26:54 +01:00
|
|
|
|
|
|
|
std::string vars() override {
|
2024-06-12 15:00:22 +02:00
|
|
|
return VARS_TO_STR3(type, ne_a, v);
|
2023-12-07 21:26:54 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
test_unary(ggml_unary_op op,
|
|
|
|
ggml_type type = GGML_TYPE_F32,
|
2024-09-03 17:21:46 +02:00
|
|
|
std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
|
2024-06-12 15:00:22 +02:00
|
|
|
int v = 0)
|
|
|
|
: op(op), type(type), ne_a(ne_a), v(v) {}
|
2023-12-07 21:26:54 +01:00
|
|
|
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
2024-09-03 17:21:46 +02:00
|
|
|
const bool grad_supported = op == GGML_UNARY_OP_ABS || op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_NEG ||
|
|
|
|
op == GGML_UNARY_OP_STEP || op == GGML_UNARY_OP_RELU || op == GGML_UNARY_OP_SILU;
|
|
|
|
|
2024-06-12 15:00:22 +02:00
|
|
|
ggml_tensor * a;
|
|
|
|
if (v & 1) {
|
|
|
|
auto ne = ne_a; ne[0] *= 3;
|
|
|
|
a = ggml_new_tensor(ctx, type, 4, ne.data());
|
2024-09-03 17:21:46 +02:00
|
|
|
if (grad_supported) {
|
|
|
|
ggml_set_param(ctx, a);
|
|
|
|
}
|
|
|
|
ggml_set_name(a, "a");
|
|
|
|
|
2024-06-12 15:00:22 +02:00
|
|
|
a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(a, "view_of_a");
|
2024-06-12 15:00:22 +02:00
|
|
|
} else {
|
|
|
|
a = ggml_new_tensor(ctx, type, 4, ne_a.data());
|
2024-09-03 17:21:46 +02:00
|
|
|
if (grad_supported) {
|
|
|
|
ggml_set_param(ctx, a);
|
|
|
|
}
|
|
|
|
ggml_set_name(a, "a");
|
2024-06-12 15:00:22 +02:00
|
|
|
}
|
2024-09-03 17:21:46 +02:00
|
|
|
|
2024-06-12 15:00:22 +02:00
|
|
|
ggml_tensor * out = ggml_unary(ctx, a, op);
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(out, "out");
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
return out;
|
|
|
|
}
|
2024-01-29 21:50:50 +01:00
|
|
|
|
|
|
|
void initialize_tensors(ggml_context * ctx) override {
|
|
|
|
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
|
|
|
// test extended range of values to check for NaNs in GELU
|
|
|
|
init_tensor_uniform(t, -150.f, 150.f);
|
|
|
|
}
|
|
|
|
}
|
2024-09-03 17:21:46 +02:00
|
|
|
|
|
|
|
float grad_eps() override {
|
|
|
|
return 15.0f;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<float> grad_expect() override {
|
|
|
|
if (op == GGML_UNARY_OP_ABS) {
|
|
|
|
return {-1.0f, 1.0f};
|
|
|
|
}
|
|
|
|
if (op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_STEP) {
|
|
|
|
return {0.0f};
|
|
|
|
}
|
|
|
|
if (op == GGML_UNARY_OP_RELU) {
|
|
|
|
return {0.0f, 1.0f};
|
|
|
|
}
|
|
|
|
return {};
|
|
|
|
}
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
};
|
|
|
|
|
|
|
|
// GGML_OP_GET_ROWS
|
|
|
|
struct test_get_rows : public test_case {
|
|
|
|
const ggml_type type;
|
|
|
|
const int n; // cols
|
|
|
|
const int m; // rows
|
|
|
|
const int r; // rows to get
|
2023-12-13 13:04:25 +01:00
|
|
|
const int b; // batch size
|
|
|
|
const bool v; // view (non-contiguous src1)
|
2023-12-07 21:26:54 +01:00
|
|
|
|
|
|
|
std::string vars() override {
|
2023-12-13 13:04:25 +01:00
|
|
|
return VARS_TO_STR6(type, n, m, r, b, v);
|
2023-12-07 21:26:54 +01:00
|
|
|
}
|
|
|
|
|
2023-12-13 13:04:25 +01:00
|
|
|
test_get_rows(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
|
|
|
|
: type(type), n(n), m(m), r(r), b(b), v(v) {}
|
2023-12-07 21:26:54 +01:00
|
|
|
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
2023-12-13 13:04:25 +01:00
|
|
|
ggml_tensor * in = ggml_new_tensor_3d(ctx, type, n, m, b);
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(in, "in");
|
|
|
|
|
2023-12-13 13:04:25 +01:00
|
|
|
ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(rows, "rows");
|
2023-12-13 13:04:25 +01:00
|
|
|
if (v) {
|
|
|
|
rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(rows, "view_of_rows");
|
2023-12-13 13:04:25 +01:00
|
|
|
}
|
2024-09-03 17:21:46 +02:00
|
|
|
|
|
|
|
const bool grad_supported = ggml_is_matrix(in) && ggml_is_vector(rows);
|
|
|
|
if (grad_supported) {
|
|
|
|
ggml_set_param(ctx, in);
|
|
|
|
// rows is a constant input -> no gradients
|
|
|
|
}
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
ggml_tensor * out = ggml_get_rows(ctx, in, rows);
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(out, "out");
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
return out;
|
|
|
|
}
|
|
|
|
|
|
|
|
void initialize_tensors(ggml_context * ctx) override {
|
|
|
|
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
|
|
|
if (t->type == GGML_TYPE_I32) {
|
2023-12-13 13:04:25 +01:00
|
|
|
if (ggml_is_view_op(t->op)) { continue; }
|
2023-12-07 21:26:54 +01:00
|
|
|
// rows
|
2023-12-13 13:04:25 +01:00
|
|
|
std::vector<int> data(r*b);
|
|
|
|
for (int i = 0; i < r*b; i++) {
|
2023-12-07 21:26:54 +01:00
|
|
|
data[i] = rand() % m;
|
|
|
|
}
|
2023-12-13 13:04:25 +01:00
|
|
|
ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
|
2023-12-07 21:26:54 +01:00
|
|
|
} else {
|
|
|
|
init_tensor_uniform(t);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2024-10-03 17:29:59 +02:00
|
|
|
// GGML_OP_ARGMAX
|
|
|
|
struct test_argmax : public test_case {
|
|
|
|
const ggml_type type;
|
|
|
|
const std::array<int64_t, 4> ne;
|
|
|
|
|
|
|
|
std::string vars() override {
|
|
|
|
return VARS_TO_STR2(type, ne);
|
|
|
|
}
|
|
|
|
|
|
|
|
test_argmax(ggml_type type = GGML_TYPE_F32,
|
|
|
|
std::array<int64_t, 4> ne = {10, 100, 1, 1})
|
|
|
|
: type(type), ne(ne) {}
|
|
|
|
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
|
|
|
|
ggml_set_name(a, "a");
|
|
|
|
|
|
|
|
ggml_tensor * out = ggml_argmax(ctx, a);
|
|
|
|
ggml_set_name(out, "out");
|
|
|
|
|
|
|
|
return out;
|
|
|
|
}
|
|
|
|
|
2024-11-21 18:18:50 +01:00
|
|
|
void initialize_tensors(ggml_context * ctx) override {
|
|
|
|
std::random_device rd;
|
|
|
|
std::default_random_engine rng(rd());
|
|
|
|
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
|
|
|
if (t->type == GGML_TYPE_F32) {
|
|
|
|
// initialize with unique values to avoid ties
|
|
|
|
for (int64_t r = 0; r < ggml_nrows(t); r++) {
|
|
|
|
std::vector<float> data(t->ne[0]);
|
|
|
|
for (int i = 0; i < t->ne[0]; i++) {
|
|
|
|
data[i] = i;
|
|
|
|
}
|
|
|
|
std::shuffle(data.begin(), data.end(), rng);
|
|
|
|
ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
init_tensor_uniform(t);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2024-10-03 17:29:59 +02:00
|
|
|
double max_nmse_err() override {
|
|
|
|
return 0.0;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
// GGML_OP_COUNT_EQUAL
|
|
|
|
struct test_count_equal : public test_case {
|
|
|
|
const ggml_type type;
|
|
|
|
const std::array<int64_t, 4> ne;
|
|
|
|
|
|
|
|
std::string vars() override {
|
|
|
|
return VARS_TO_STR2(type, ne);
|
|
|
|
}
|
|
|
|
|
|
|
|
test_count_equal(ggml_type type = GGML_TYPE_F32,
|
|
|
|
std::array<int64_t, 4> ne = {4, 500, 1, 1})
|
|
|
|
: type(type), ne(ne) {}
|
|
|
|
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
|
|
|
|
ggml_set_name(a, "a");
|
|
|
|
|
|
|
|
ggml_tensor * a_argmax = ggml_argmax(ctx, a);
|
|
|
|
ggml_set_name(a_argmax, "a_argmax");
|
|
|
|
|
|
|
|
ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
|
|
|
|
ggml_set_name(b, "b");
|
|
|
|
|
|
|
|
ggml_tensor * b_argmax = ggml_argmax(ctx, a);
|
|
|
|
ggml_set_name(b_argmax, "b_argmax");
|
|
|
|
|
|
|
|
ggml_tensor * out = ggml_count_equal(ctx, a_argmax, b_argmax);
|
|
|
|
ggml_set_name(out, "out");
|
|
|
|
|
|
|
|
return out;
|
|
|
|
}
|
|
|
|
|
|
|
|
double max_nmse_err() override {
|
|
|
|
return 0.0;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
// GGML_OP_REPEAT
|
|
|
|
struct test_repeat : public test_case {
|
|
|
|
const ggml_type type;
|
|
|
|
const std::array<int64_t, 4> ne;
|
|
|
|
const std::array<int, 4> nr;
|
|
|
|
|
|
|
|
std::string vars() override {
|
|
|
|
return VARS_TO_STR3(type, ne, nr);
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t op_size(ggml_tensor * t) override {
|
|
|
|
return ggml_nbytes(t) * 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
test_repeat(ggml_type type = GGML_TYPE_F32,
|
2024-09-03 17:21:46 +02:00
|
|
|
std::array<int64_t, 4> ne = {10, 5, 4, 3},
|
2023-12-07 21:26:54 +01:00
|
|
|
std::array<int, 4> nr = {2, 2, 2, 2})
|
|
|
|
: type(type), ne(ne), nr(nr) {}
|
|
|
|
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
|
|
ggml_tensor * target = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(target, "target");
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_param(ctx, src);
|
|
|
|
ggml_set_name(src, "src");
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
ggml_tensor * out = ggml_repeat(ctx, src, target);
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(out, "out");
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
return out;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
// GGML_OP_DUP
|
|
|
|
struct test_dup : public test_case {
|
|
|
|
const ggml_type type;
|
|
|
|
const std::array<int64_t, 4> ne;
|
2023-12-29 18:07:03 +01:00
|
|
|
const std::array<int64_t, 4> permute;
|
|
|
|
bool _use_permute;
|
2023-12-07 21:26:54 +01:00
|
|
|
|
|
|
|
std::string vars() override {
|
2023-12-29 18:07:03 +01:00
|
|
|
std::string v = VARS_TO_STR2(type, ne);
|
|
|
|
if (_use_permute) v += "," + VAR_TO_STR(permute);
|
|
|
|
return v;
|
2023-12-07 21:26:54 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
test_dup(ggml_type type = GGML_TYPE_F32,
|
2024-07-17 13:23:50 +02:00
|
|
|
std::array<int64_t, 4> ne = {10, 10, 20, 1},
|
2023-12-29 18:07:03 +01:00
|
|
|
std::array<int64_t, 4> permute = {0, 0, 0, 0})
|
|
|
|
: type(type), ne(ne), permute(permute),
|
|
|
|
_use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
|
2023-12-07 21:26:54 +01:00
|
|
|
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
|
|
ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_param(ctx, src);
|
|
|
|
ggml_set_name(src, "src");
|
|
|
|
|
2023-12-29 18:07:03 +01:00
|
|
|
if (_use_permute) {
|
|
|
|
src = ggml_permute(ctx, src, permute[0], permute[1], permute[2], permute[3]);
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(src, "src_permuted");
|
2023-12-29 18:07:03 +01:00
|
|
|
}
|
2024-09-03 17:21:46 +02:00
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
ggml_tensor * out = ggml_dup(ctx, src);
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(out, "out");
|
|
|
|
|
|
|
|
return out;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
// GGML_OP_SET
|
|
|
|
struct test_set : public test_case {
|
|
|
|
const ggml_type type_src;
|
|
|
|
const ggml_type type_dst;
|
|
|
|
const std::array<int64_t, 4> ne;
|
|
|
|
const int dim;
|
|
|
|
|
|
|
|
std::string vars() override {
|
|
|
|
return VARS_TO_STR4(type_src, type_dst, ne, dim);
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t op_size(ggml_tensor * t) override {
|
|
|
|
return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
|
|
|
|
}
|
|
|
|
|
|
|
|
test_set(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
|
|
|
|
std::array<int64_t, 4> ne = {6, 5, 4, 3}, int dim = 1)
|
|
|
|
: type_src(type_src), type_dst(type_dst), ne(ne), dim(dim) {}
|
|
|
|
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
|
|
ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
|
|
|
|
ggml_set_param(ctx, src);
|
|
|
|
ggml_set_name(src, "src");
|
|
|
|
|
|
|
|
auto ne_dst = ne;
|
|
|
|
for (int i = 0; i < dim; ++i) {
|
|
|
|
ne_dst[i] *= 2;
|
|
|
|
}
|
|
|
|
ggml_tensor* dst = ggml_new_tensor(ctx, type_dst, 4, ne_dst.data());
|
|
|
|
ggml_set_param(ctx, dst);
|
|
|
|
ggml_set_name(dst, "dst");
|
|
|
|
|
|
|
|
size_t offset = 0;
|
|
|
|
for (int i = 0; i < dim; ++i) {
|
|
|
|
offset += ((ne_dst[i] - ne[i])/2)*dst->nb[i];
|
|
|
|
}
|
|
|
|
ggml_tensor * out = ggml_set(ctx, dst, src,
|
2024-09-29 23:18:02 +02:00
|
|
|
// The backward pass requires setting a contiguous region:
|
2024-09-03 17:21:46 +02:00
|
|
|
src->nb[1], src->nb[2], src->nb[3], offset);
|
|
|
|
ggml_set_name(out, "out");
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
return out;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
// GGML_OP_CPY
|
|
|
|
struct test_cpy : public test_case {
|
|
|
|
const ggml_type type_src;
|
|
|
|
const ggml_type type_dst;
|
|
|
|
const std::array<int64_t, 4> ne;
|
2024-07-17 13:23:50 +02:00
|
|
|
const std::array<int64_t, 4> permute;
|
|
|
|
bool _src_use_permute;
|
2023-12-07 21:26:54 +01:00
|
|
|
|
|
|
|
std::string vars() override {
|
2024-07-17 13:23:50 +02:00
|
|
|
return VARS_TO_STR4(type_src, type_dst, ne, permute);
|
2023-12-07 21:26:54 +01:00
|
|
|
}
|
|
|
|
|
2024-06-23 13:14:45 +02:00
|
|
|
double max_nmse_err() override {
|
|
|
|
return 1e-6;
|
|
|
|
}
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
size_t op_size(ggml_tensor * t) override {
|
|
|
|
return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
|
|
|
|
}
|
|
|
|
|
|
|
|
test_cpy(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
|
2024-07-17 13:23:50 +02:00
|
|
|
std::array<int64_t, 4> ne = {10, 10, 10, 1},
|
2024-08-01 15:26:22 +02:00
|
|
|
std::array<int64_t, 4> permute = {0, 0, 0, 0})
|
2024-07-17 13:23:50 +02:00
|
|
|
: type_src(type_src), type_dst(type_dst), ne(ne), permute(permute),
|
|
|
|
_src_use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
|
2023-12-07 21:26:54 +01:00
|
|
|
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
|
|
ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_param(ctx, src);
|
|
|
|
ggml_set_name(src, "src");
|
|
|
|
|
2024-07-17 13:23:50 +02:00
|
|
|
if (_src_use_permute) {
|
|
|
|
src = ggml_permute(ctx, src, permute[0], permute[1], permute[2], permute[3]);
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(src, "src_permuted");
|
2024-07-17 13:23:50 +02:00
|
|
|
}
|
2024-09-03 17:21:46 +02:00
|
|
|
|
2024-07-17 13:23:50 +02:00
|
|
|
ggml_tensor* dst = ggml_new_tensor(ctx, type_dst, 4, src->ne);
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(dst, "dst");
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
ggml_tensor * out = ggml_cpy(ctx, src, dst);
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(out, "out");
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
return out;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
// GGML_OP_CONT
|
|
|
|
struct test_cont : public test_case {
|
|
|
|
const ggml_type type;
|
|
|
|
const std::array<int64_t, 4> ne;
|
|
|
|
|
|
|
|
std::string vars() override {
|
|
|
|
return VARS_TO_STR2(type, ne);
|
|
|
|
}
|
|
|
|
|
|
|
|
test_cont(ggml_type type = GGML_TYPE_F32,
|
|
|
|
std::array<int64_t, 4> ne = {10, 10, 10, 1})
|
|
|
|
: type(type), ne(ne) {}
|
|
|
|
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
|
|
ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_param(ctx, src);
|
|
|
|
ggml_set_name(src, "src");
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
src = ggml_transpose(ctx, src);
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(src, "src_transposed");
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
ggml_tensor * out = ggml_cont(ctx, src);
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(out, "out");
|
2023-12-07 21:26:54 +01:00
|
|
|
|
|
|
|
return out;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
// GGML_OP_ADD
|
|
|
|
// GGML_OP_MUL
|
|
|
|
// GGML_OP_DIV
|
|
|
|
struct test_bin_bcast : public test_case {
|
|
|
|
using op_t = ggml_tensor * (*) (ggml_context *, ggml_tensor *, ggml_tensor *);
|
|
|
|
op_t op;
|
|
|
|
const ggml_type type;
|
|
|
|
const std::array<int64_t, 4> ne;
|
|
|
|
const std::array<int, 4> nr;
|
|
|
|
|
|
|
|
std::string vars() override {
|
|
|
|
return VARS_TO_STR3(type, ne, nr);
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t op_size(ggml_tensor * t) override {
|
|
|
|
return ggml_nbytes(t) * 3;
|
|
|
|
}
|
|
|
|
|
|
|
|
test_bin_bcast(op_t op, ggml_type type = GGML_TYPE_F32,
|
|
|
|
std::array<int64_t, 4> ne = {10, 10, 1, 1},
|
|
|
|
std::array<int, 4> nr = {1, 2, 1, 1})
|
|
|
|
: op(op), type(type), ne(ne), nr(nr) {}
|
|
|
|
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
|
|
ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(a, "a");
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(b, "b");
|
|
|
|
|
2024-09-29 23:18:02 +02:00
|
|
|
// The backward pass supports broadcasting only for GGML_ADD:
|
2024-09-03 17:21:46 +02:00
|
|
|
const bool grad_supported = op == ggml_add || ggml_are_same_shape(a, b);
|
|
|
|
if (grad_supported) {
|
|
|
|
ggml_set_param(ctx, a);
|
|
|
|
ggml_set_param(ctx, b);
|
|
|
|
}
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
ggml_tensor * out = op(ctx, a, b);
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(out, "out");
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
return out;
|
|
|
|
}
|
|
|
|
|
|
|
|
void initialize_tensors(ggml_context * ctx) override {
|
|
|
|
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
2024-09-03 17:21:46 +02:00
|
|
|
if (op == ggml_mul || op == ggml_div) {
|
|
|
|
// MUL and DIV have numerical issues around zero:
|
|
|
|
init_tensor_uniform(t, 0.9f, 1.1f);
|
2023-12-07 21:26:54 +01:00
|
|
|
} else {
|
|
|
|
init_tensor_uniform(t);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2024-09-03 17:21:46 +02:00
|
|
|
|
|
|
|
float grad_eps() override {
|
|
|
|
return 0.1f * (op == ggml_mul ? ne[0]*ne[1]*ne[2]*ne[3] : 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool grad_precise() override {
|
|
|
|
return op == ggml_div;
|
|
|
|
}
|
|
|
|
|
|
|
|
double max_maa_err() override {
|
|
|
|
return op == ggml_add ? 1e-4 : 1e-3;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
// GGML_OP_ADD1
|
|
|
|
struct test_add1 : public test_case {
|
|
|
|
const ggml_type type;
|
|
|
|
const std::array<int64_t, 4> ne;
|
|
|
|
|
|
|
|
std::string vars() override {
|
|
|
|
return VARS_TO_STR2(type, ne);
|
|
|
|
}
|
|
|
|
|
|
|
|
test_add1(ggml_type type = GGML_TYPE_F32,
|
|
|
|
std::array<int64_t, 4> ne = {10, 5, 4, 3})
|
|
|
|
: type(type), ne(ne) {}
|
|
|
|
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
|
|
|
|
ggml_set_param(ctx, a);
|
|
|
|
ggml_set_name(a, "a");
|
|
|
|
|
|
|
|
ggml_tensor * b = ggml_new_tensor_1d(ctx, type, 1);
|
|
|
|
// ggml_set_param(ctx, b); // TODO: implement
|
|
|
|
ggml_set_name(b, "b");
|
|
|
|
|
|
|
|
ggml_tensor * out = ggml_add1(ctx, a, b);
|
|
|
|
ggml_set_name(out, "out");
|
|
|
|
|
|
|
|
return out;
|
|
|
|
}
|
|
|
|
|
|
|
|
float grad_eps() override {
|
|
|
|
return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
|
|
|
|
}
|
2023-12-07 21:26:54 +01:00
|
|
|
};
|
|
|
|
|
|
|
|
// GGML_OP_SCALE
|
|
|
|
struct test_scale : public test_case {
|
|
|
|
const ggml_type type;
|
|
|
|
const std::array<int64_t, 4> ne;
|
2023-12-21 22:20:49 +01:00
|
|
|
float scale;
|
2023-12-07 21:26:54 +01:00
|
|
|
|
|
|
|
std::string vars() override {
|
2023-12-21 22:20:49 +01:00
|
|
|
return VARS_TO_STR3(type, ne, scale);
|
2023-12-07 21:26:54 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
test_scale(ggml_type type = GGML_TYPE_F32,
|
2023-12-21 22:20:49 +01:00
|
|
|
std::array<int64_t, 4> ne = {10, 10, 10, 10},
|
|
|
|
float scale = 2.0f)
|
|
|
|
: type(type), ne(ne), scale(scale) {}
|
2023-12-07 21:26:54 +01:00
|
|
|
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_param(ctx, a);
|
|
|
|
ggml_set_name(a, "a");
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
ggml_tensor * out = ggml_scale(ctx, a, scale);
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(out, "out");
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
return out;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
// GGML_OP_NORM
|
|
|
|
struct test_norm : public test_case {
|
|
|
|
const ggml_type type;
|
|
|
|
const std::array<int64_t, 4> ne;
|
|
|
|
float eps;
|
|
|
|
|
|
|
|
std::string vars() override {
|
|
|
|
return VARS_TO_STR3(type, ne, eps);
|
|
|
|
}
|
|
|
|
|
|
|
|
test_norm(ggml_type type = GGML_TYPE_F32,
|
2024-09-03 17:21:46 +02:00
|
|
|
std::array<int64_t, 4> ne = {64, 5, 4, 3},
|
2023-12-07 21:26:54 +01:00
|
|
|
float eps = 1e-6f)
|
|
|
|
: type(type), ne(ne), eps(eps) {}
|
|
|
|
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(a, "a");
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
ggml_tensor * out = ggml_norm(ctx, a, eps);
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(out, "out");
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
return out;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
// GGML_OP_RMS_NORM
|
|
|
|
struct test_rms_norm : public test_case {
|
|
|
|
const ggml_type type;
|
|
|
|
const std::array<int64_t, 4> ne;
|
|
|
|
float eps;
|
|
|
|
|
|
|
|
std::string vars() override {
|
|
|
|
return VARS_TO_STR3(type, ne, eps);
|
|
|
|
}
|
|
|
|
|
|
|
|
test_rms_norm(ggml_type type = GGML_TYPE_F32,
|
2024-09-03 17:21:46 +02:00
|
|
|
std::array<int64_t, 4> ne = {64, 5, 4, 3},
|
2023-12-07 21:26:54 +01:00
|
|
|
float eps = 1e-6f)
|
|
|
|
: type(type), ne(ne), eps(eps) {}
|
|
|
|
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_param(ctx, a);
|
|
|
|
ggml_set_name(a, "a");
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
ggml_tensor * out = ggml_rms_norm(ctx, a, eps);
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(out, "out");
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
return out;
|
|
|
|
}
|
2024-09-03 17:21:46 +02:00
|
|
|
|
|
|
|
bool grad_precise() override {
|
|
|
|
return true;
|
|
|
|
}
|
2023-12-07 21:26:54 +01:00
|
|
|
};
|
|
|
|
|
2024-08-26 16:55:36 +02:00
|
|
|
// GGML_OP_SSM_CONV
|
|
|
|
struct test_ssm_conv : public test_case {
|
|
|
|
const ggml_type type;
|
|
|
|
const std::array<int64_t, 4> ne_a;
|
|
|
|
const std::array<int64_t, 4> ne_b;
|
|
|
|
|
|
|
|
std::string vars() override {
|
|
|
|
return VARS_TO_STR3(type, ne_a, ne_b);
|
|
|
|
}
|
|
|
|
|
|
|
|
test_ssm_conv(ggml_type type = GGML_TYPE_F32,
|
|
|
|
std::array<int64_t, 4> ne_a = {10, 10, 10, 1},
|
|
|
|
std::array<int64_t, 4> ne_b = {3, 3, 1, 1})
|
|
|
|
: type(type), ne_a(ne_a), ne_b(ne_b) {}
|
|
|
|
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
|
|
|
|
ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
|
|
|
|
ggml_tensor * out = ggml_ssm_conv(ctx, a, b);
|
|
|
|
return out;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
// GGML_OP_SSM_SCAN
|
|
|
|
struct test_ssm_scan : public test_case {
|
|
|
|
const ggml_type type;
|
|
|
|
|
|
|
|
const int64_t d_state;
|
|
|
|
const int64_t d_inner;
|
|
|
|
const int64_t n_seq_tokens;
|
|
|
|
const int64_t n_seqs;
|
|
|
|
|
|
|
|
std::string vars() override {
|
|
|
|
return VARS_TO_STR5(type, d_state, d_inner, n_seq_tokens, n_seqs);
|
|
|
|
}
|
|
|
|
|
|
|
|
test_ssm_scan(ggml_type type = GGML_TYPE_F32,
|
|
|
|
int64_t d_state = 32, int64_t d_inner = 32, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
|
|
|
|
: type(type), d_state(d_state), d_inner(d_inner), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
|
|
|
|
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
|
|
ggml_tensor * s = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, d_inner, n_seqs, 1 }.data());
|
|
|
|
ggml_tensor * x = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_inner, n_seq_tokens, n_seqs, 1 }.data());
|
|
|
|
ggml_tensor * dt = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_inner, n_seq_tokens, n_seqs, 1 }.data());
|
|
|
|
ggml_tensor * A = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, d_inner, 1 , 1 }.data());
|
|
|
|
ggml_tensor * B = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, n_seq_tokens, n_seqs, 1 }.data());
|
|
|
|
ggml_tensor * C = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, n_seq_tokens, n_seqs, 1 }.data());
|
|
|
|
ggml_tensor * out = ggml_ssm_scan(ctx, s, x, dt, A, B, C);
|
|
|
|
return out;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2024-11-07 08:19:10 +01:00
|
|
|
// GGML_OP_RWKV_WKV6
|
|
|
|
struct test_rwkv_wkv6 : public test_case {
|
2024-09-22 04:29:12 +02:00
|
|
|
const ggml_type type;
|
|
|
|
|
|
|
|
const int64_t head_count;
|
|
|
|
const int64_t head_size;
|
|
|
|
const int64_t n_seq_tokens;
|
|
|
|
const int64_t n_seqs;
|
|
|
|
|
|
|
|
std::string vars() override {
|
|
|
|
return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
|
|
|
|
}
|
|
|
|
|
2024-11-07 08:19:10 +01:00
|
|
|
test_rwkv_wkv6(ggml_type type = GGML_TYPE_F32,
|
2024-09-22 04:29:12 +02:00
|
|
|
int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
|
|
|
|
: type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
|
|
|
|
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
|
|
const int64_t n_tokens = n_seq_tokens * n_seqs;
|
2025-01-10 02:58:08 +01:00
|
|
|
ggml_tensor * r = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
|
|
|
|
ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
|
|
|
|
ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
|
2024-09-22 04:29:12 +02:00
|
|
|
ggml_tensor * tf = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size, head_count }.data());
|
2025-01-10 02:58:08 +01:00
|
|
|
ggml_tensor * td = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
|
2024-09-22 04:29:12 +02:00
|
|
|
ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
|
2024-11-07 08:19:10 +01:00
|
|
|
ggml_tensor * out = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, s);
|
2024-09-22 04:29:12 +02:00
|
|
|
return out;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2025-01-10 02:58:08 +01:00
|
|
|
// GGML_OP_GATED_LINEAR_ATTN
|
|
|
|
struct test_gla : public test_case {
|
|
|
|
const ggml_type type;
|
|
|
|
|
|
|
|
const int64_t head_count;
|
|
|
|
const int64_t head_size;
|
|
|
|
const int64_t n_seq_tokens;
|
|
|
|
const int64_t n_seqs;
|
|
|
|
|
|
|
|
std::string vars() override {
|
|
|
|
return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
|
|
|
|
}
|
|
|
|
|
|
|
|
test_gla(ggml_type type = GGML_TYPE_F32,
|
|
|
|
int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
|
|
|
|
: type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
|
|
|
|
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
|
|
const int64_t n_tokens = n_seq_tokens * n_seqs;
|
|
|
|
ggml_tensor * q = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
|
|
|
|
ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
|
|
|
|
ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
|
|
|
|
ggml_tensor * g = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
|
|
|
|
ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
|
|
|
|
ggml_tensor * out = ggml_gated_linear_attn(ctx, k, v, q, g, s, pow(head_size, -0.5));
|
|
|
|
return out;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
// GGML_OP_MUL_MAT
|
|
|
|
struct test_mul_mat : public test_case {
|
|
|
|
const ggml_type type_a;
|
|
|
|
const ggml_type type_b;
|
|
|
|
const int64_t m;
|
|
|
|
const int64_t n;
|
|
|
|
const int64_t k;
|
2024-10-24 11:09:36 +02:00
|
|
|
const std::array<int64_t, 2> bs; // dims 3 and 4
|
|
|
|
const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
|
|
|
|
const std::array<int64_t, 4> per; // permutation of dimensions
|
2023-12-07 21:26:54 +01:00
|
|
|
|
|
|
|
std::string vars() override {
|
2024-10-24 11:09:36 +02:00
|
|
|
return VARS_TO_STR8(type_a, type_b, m, n, k, bs, nr, per);
|
2023-12-07 21:26:54 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
double max_nmse_err() override {
|
|
|
|
return 5e-4;
|
|
|
|
}
|
|
|
|
|
2024-09-28 14:32:46 +02:00
|
|
|
uint64_t op_flops(ggml_tensor * t) override {
|
2023-12-07 21:26:54 +01:00
|
|
|
GGML_UNUSED(t);
|
2024-09-28 14:32:46 +02:00
|
|
|
return 2 * m * n * k * bs[0] * nr[0] * bs[1] * nr[1];
|
2023-12-07 21:26:54 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
test_mul_mat(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
|
|
|
|
int64_t m = 32, int64_t n = 32, int64_t k = 32,
|
|
|
|
std::array<int64_t, 2> bs = {10, 10},
|
2024-10-24 11:09:36 +02:00
|
|
|
std::array<int64_t, 2> nr = {2, 2},
|
|
|
|
std::array<int64_t, 4> per = {0, 1, 2, 3})
|
|
|
|
: type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), per(per) {}
|
2023-12-07 21:26:54 +01:00
|
|
|
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
|
|
// C^T = A * B^T: (k, m) * (k, n) => (m, n)
|
2024-10-24 11:09:36 +02:00
|
|
|
ggml_tensor * a;
|
|
|
|
ggml_tensor * b;
|
|
|
|
|
|
|
|
const int npermuted = (per[0] != 0) + (per[1] != 1) + (per[2] != 2) + (per[3] != 3);
|
|
|
|
if (npermuted > 0) {
|
|
|
|
GGML_ASSERT(npermuted == 2);
|
|
|
|
GGML_ASSERT(!ggml_is_quantized(type_a) || per[0] == 0);
|
|
|
|
GGML_ASSERT(!ggml_is_quantized(type_b) || per[0] == 0);
|
|
|
|
|
|
|
|
// Create tensors with the permuted dimensions, then permute them back to the dimensions given by m,n,k.
|
|
|
|
const int64_t ne_a[4] = {k, m, bs[0], bs[1]};
|
|
|
|
const int64_t ne_b[4] = {k, n, bs[0]*nr[0], bs[1]*nr[1]};
|
|
|
|
|
|
|
|
a = ggml_new_tensor_4d(ctx, type_a, ne_a[per[0]], ne_a[per[1]], ne_a[per[2]], ne_a[per[3]]);
|
|
|
|
b = ggml_new_tensor_4d(ctx, type_b, ne_b[per[0]], ne_b[per[1]], ne_b[per[2]], ne_b[per[3]]);
|
|
|
|
ggml_set_param(ctx, a);
|
|
|
|
ggml_set_param(ctx, b);
|
|
|
|
ggml_set_name(a, "a");
|
|
|
|
ggml_set_name(b, "b");
|
|
|
|
|
|
|
|
a = ggml_permute(ctx, a, per[0], per[1], per[2], per[3]);
|
|
|
|
b = ggml_permute(ctx, b, per[0], per[1], per[2], per[3]);
|
|
|
|
ggml_set_name(a, "a_permuted");
|
|
|
|
ggml_set_name(b, "b_permuted");
|
|
|
|
} else {
|
|
|
|
a = ggml_new_tensor_4d(ctx, type_a, k, m, bs[0], bs[1]);
|
|
|
|
b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
|
|
|
|
ggml_set_param(ctx, a);
|
|
|
|
ggml_set_param(ctx, b);
|
|
|
|
ggml_set_name(a, "a");
|
|
|
|
ggml_set_name(b, "b");
|
|
|
|
}
|
2024-09-03 17:21:46 +02:00
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
ggml_tensor * out = ggml_mul_mat(ctx, a, b);
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(out, "out");
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
return out;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
// GGML_OP_MUL_MAT_ID
|
|
|
|
struct test_mul_mat_id : public test_case {
|
|
|
|
const ggml_type type_a;
|
|
|
|
const ggml_type type_b;
|
|
|
|
const int n_mats;
|
2024-04-18 15:18:48 +02:00
|
|
|
const int n_used;
|
|
|
|
const bool b; // brodcast b matrix
|
2023-12-07 21:26:54 +01:00
|
|
|
const int64_t m;
|
|
|
|
const int64_t n;
|
|
|
|
const int64_t k;
|
|
|
|
|
|
|
|
std::string vars() override {
|
2024-04-18 15:18:48 +02:00
|
|
|
return VARS_TO_STR8(type_a, type_b, n_mats, n_used, b, m, n, k);
|
2023-12-07 21:26:54 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
double max_nmse_err() override {
|
|
|
|
return 5e-4;
|
|
|
|
}
|
|
|
|
|
2024-09-28 14:32:46 +02:00
|
|
|
uint64_t op_flops(ggml_tensor * t) override {
|
2023-12-07 21:26:54 +01:00
|
|
|
GGML_UNUSED(t);
|
2024-09-28 14:32:46 +02:00
|
|
|
return 2 * m * k * n * n_used;
|
2023-12-07 21:26:54 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
test_mul_mat_id(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
|
2024-04-18 15:18:48 +02:00
|
|
|
int n_mats = 8, int n_used = 2, bool b = false,
|
|
|
|
int64_t m = 32, int64_t n = 32, int64_t k = 32)
|
|
|
|
: type_a(type_a), type_b(type_b), n_mats(n_mats), n_used(n_used), b(b),
|
|
|
|
m(m), n(n), k(k) {
|
|
|
|
GGML_ASSERT(n_used <= n_mats);
|
|
|
|
}
|
2023-12-07 21:26:54 +01:00
|
|
|
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
|
|
// C^T = A * B^T: (k, m) * (k, n) => (m, n)
|
2024-04-18 15:18:48 +02:00
|
|
|
ggml_tensor * as = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(as, "as");
|
|
|
|
|
2023-12-13 13:04:25 +01:00
|
|
|
ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n);
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(ids, "ids");
|
2024-04-18 15:18:48 +02:00
|
|
|
if (n_used != n_mats) {
|
|
|
|
ids = ggml_view_2d(ctx, ids, n_used, n, ids->nb[1], 0);
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(ids, "view_of_ids");
|
2023-12-13 13:04:25 +01:00
|
|
|
}
|
2024-09-03 17:21:46 +02:00
|
|
|
|
2024-04-18 15:18:48 +02:00
|
|
|
ggml_tensor * b = ggml_new_tensor_3d(ctx, type_b, k, this->b ? 1 : n_used, n);
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(b, "b");
|
|
|
|
|
2024-04-18 15:18:48 +02:00
|
|
|
ggml_tensor * out = ggml_mul_mat_id(ctx, as, b, ids);
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(out, "out");
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
return out;
|
|
|
|
}
|
|
|
|
|
|
|
|
void initialize_tensors(ggml_context * ctx) override {
|
2023-12-13 13:04:25 +01:00
|
|
|
std::random_device rd;
|
|
|
|
std::default_random_engine rng(rd());
|
2023-12-07 21:26:54 +01:00
|
|
|
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
|
|
|
if (t->type == GGML_TYPE_I32) {
|
2023-12-13 13:04:25 +01:00
|
|
|
if (ggml_is_view_op(t->op)) { continue; }
|
2023-12-07 21:26:54 +01:00
|
|
|
// ids
|
2023-12-13 13:04:25 +01:00
|
|
|
for (int64_t r = 0; r < ggml_nrows(t); r++) {
|
|
|
|
std::vector<int32_t> data(t->ne[0]);
|
|
|
|
for (int i = 0; i < t->ne[0]; i++) {
|
|
|
|
data[i] = i % n_mats;
|
|
|
|
}
|
|
|
|
std::shuffle(data.begin(), data.end(), rng);
|
|
|
|
ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
|
2023-12-07 21:26:54 +01:00
|
|
|
}
|
|
|
|
} else {
|
|
|
|
init_tensor_uniform(t);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2024-09-20 18:04:44 +02:00
|
|
|
// GGML_OP_OUT_PROD
|
|
|
|
struct test_out_prod : public test_case {
|
|
|
|
const ggml_type type_a;
|
|
|
|
const ggml_type type_b;
|
|
|
|
const int64_t m;
|
|
|
|
const int64_t n;
|
|
|
|
const int64_t k;
|
|
|
|
const std::array<int64_t, 2> bs; // dims 3 and 4
|
|
|
|
const bool trans_b;
|
|
|
|
|
|
|
|
std::string vars() override {
|
|
|
|
return VARS_TO_STR7(type_a, type_b, m, n, k, bs, trans_b);
|
|
|
|
}
|
|
|
|
|
|
|
|
double max_nmse_err() override {
|
|
|
|
return 5e-4;
|
|
|
|
}
|
|
|
|
|
|
|
|
test_out_prod(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
|
|
|
|
int64_t m = 32, int64_t n = 32, int64_t k = 32,
|
|
|
|
std::array<int64_t, 2> bs = {10, 10},
|
|
|
|
bool trans_b = false)
|
|
|
|
: type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), trans_b(trans_b) {}
|
|
|
|
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
|
|
ggml_tensor * a = ggml_new_tensor_4d(ctx, type_a, m, k, bs[0], bs[1]);
|
|
|
|
ggml_set_name(a, "a");
|
|
|
|
|
|
|
|
ggml_tensor * b;
|
|
|
|
if (trans_b) {
|
|
|
|
b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0], bs[1]);
|
|
|
|
b = ggml_transpose(ctx, b);
|
|
|
|
} else {
|
|
|
|
b = ggml_new_tensor_4d(ctx, type_b, n, k, bs[0], bs[1]);
|
|
|
|
}
|
|
|
|
ggml_set_name(b, "b");
|
|
|
|
|
|
|
|
ggml_tensor * out = ggml_out_prod(ctx, a, b);
|
|
|
|
ggml_set_name(out, "out");
|
|
|
|
|
|
|
|
return out;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
// GGML_OP_SQR
|
|
|
|
struct test_sqr : public test_case {
|
|
|
|
const ggml_type type;
|
|
|
|
const std::array<int64_t, 4> ne;
|
|
|
|
|
|
|
|
std::string vars() override {
|
|
|
|
return VARS_TO_STR2(type, ne);
|
|
|
|
}
|
|
|
|
|
|
|
|
test_sqr(ggml_type type = GGML_TYPE_F32,
|
2024-09-03 17:21:46 +02:00
|
|
|
std::array<int64_t, 4> ne = {10, 5, 4, 3})
|
2023-12-07 21:26:54 +01:00
|
|
|
: type(type), ne(ne) {}
|
|
|
|
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_param(ctx, a);
|
|
|
|
ggml_set_name(a, "a");
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
ggml_tensor * out = ggml_sqr(ctx, a);
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(out, "out");
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
return out;
|
|
|
|
}
|
2024-09-03 17:21:46 +02:00
|
|
|
|
|
|
|
float grad_eps() override {
|
|
|
|
return 0.1f * 0.25f*ne[0]*ne[1]*ne[2]*ne[3]; // 10% of expected value of sum.
|
|
|
|
}
|
2023-12-07 21:26:54 +01:00
|
|
|
};
|
|
|
|
|
2024-06-17 00:23:04 +02:00
|
|
|
// GGML_OP_SQRT
|
|
|
|
struct test_sqrt : public test_case {
|
|
|
|
const ggml_type type;
|
|
|
|
const std::array<int64_t, 4> ne;
|
|
|
|
|
|
|
|
std::string vars() override {
|
|
|
|
return VARS_TO_STR2(type, ne);
|
|
|
|
}
|
|
|
|
|
|
|
|
test_sqrt(ggml_type type = GGML_TYPE_F32,
|
2024-09-03 17:21:46 +02:00
|
|
|
std::array<int64_t, 4> ne = {10, 3, 3, 2})
|
2024-06-17 00:23:04 +02:00
|
|
|
: type(type), ne(ne) {}
|
|
|
|
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_param(ctx, a);
|
|
|
|
ggml_set_name(a, "a");
|
|
|
|
|
2024-06-17 00:23:04 +02:00
|
|
|
ggml_tensor * out = ggml_sqrt(ctx, a);
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(out, "out");
|
|
|
|
|
2024-06-17 00:23:04 +02:00
|
|
|
return out;
|
|
|
|
}
|
|
|
|
|
|
|
|
void initialize_tensors(ggml_context * ctx) override {
|
|
|
|
// fill with positive values
|
|
|
|
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
2024-09-03 17:21:46 +02:00
|
|
|
init_tensor_uniform(t, 50.0f, 100.0f);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
float grad_eps() override {
|
|
|
|
return 20.0f;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool grad_precise() override {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
// GGML_OP_LOG
|
|
|
|
struct test_log : public test_case {
|
|
|
|
const ggml_type type;
|
|
|
|
const std::array<int64_t, 4> ne;
|
|
|
|
|
|
|
|
std::string vars() override {
|
|
|
|
return VARS_TO_STR2(type, ne);
|
|
|
|
}
|
|
|
|
|
|
|
|
test_log(ggml_type type = GGML_TYPE_F32,
|
|
|
|
std::array<int64_t, 4> ne = {10, 5, 4, 3})
|
|
|
|
: type(type), ne(ne) {}
|
|
|
|
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
|
|
|
|
ggml_set_param(ctx, a);
|
|
|
|
ggml_set_name(a, "a");
|
|
|
|
|
|
|
|
ggml_tensor * out = ggml_log(ctx, a);
|
|
|
|
ggml_set_name(out, "out");
|
|
|
|
|
|
|
|
return out;
|
|
|
|
}
|
|
|
|
|
|
|
|
void initialize_tensors(ggml_context * ctx) override {
|
|
|
|
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
2024-09-29 23:18:02 +02:00
|
|
|
// log(1) == 0, cluster values there to keep the sum low for better precision in the backward pass:
|
2024-09-03 17:21:46 +02:00
|
|
|
init_tensor_uniform(t, 0.9f, 1.1f);
|
2024-06-17 00:23:04 +02:00
|
|
|
}
|
|
|
|
}
|
2024-09-03 17:21:46 +02:00
|
|
|
|
|
|
|
bool grad_precise() override {
|
|
|
|
return true;
|
|
|
|
}
|
2024-06-17 00:23:04 +02:00
|
|
|
};
|
|
|
|
|
2024-08-27 21:01:45 +02:00
|
|
|
// GGML_OP_SIN
|
|
|
|
struct test_sin : public test_case {
|
|
|
|
const ggml_type type;
|
|
|
|
const std::array<int64_t, 4> ne;
|
|
|
|
|
|
|
|
std::string vars() override {
|
|
|
|
return VARS_TO_STR2(type, ne);
|
|
|
|
}
|
|
|
|
|
|
|
|
test_sin(ggml_type type = GGML_TYPE_F32,
|
2024-09-03 17:21:46 +02:00
|
|
|
std::array<int64_t, 4> ne = {10, 2, 2, 2})
|
2024-08-27 21:01:45 +02:00
|
|
|
: type(type), ne(ne) {}
|
|
|
|
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_param(ctx, a);
|
|
|
|
ggml_set_name(a, "a");
|
|
|
|
|
2024-08-27 21:01:45 +02:00
|
|
|
ggml_tensor * out = ggml_sin(ctx, a);
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(out, "out");
|
|
|
|
|
2024-08-27 21:01:45 +02:00
|
|
|
return out;
|
|
|
|
}
|
|
|
|
|
|
|
|
void initialize_tensors(ggml_context * ctx) override {
|
|
|
|
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
2024-09-03 17:21:46 +02:00
|
|
|
init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
|
2024-08-27 21:01:45 +02:00
|
|
|
}
|
|
|
|
}
|
2024-09-03 17:21:46 +02:00
|
|
|
|
|
|
|
double max_maa_err() override {
|
|
|
|
return 1e-3;
|
|
|
|
}
|
|
|
|
|
|
|
|
float grad_eps() override {
|
|
|
|
return 0.2f;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool grad_precise() override {
|
|
|
|
return true;
|
|
|
|
}
|
2024-08-27 21:01:45 +02:00
|
|
|
};
|
|
|
|
|
|
|
|
// GGML_OP_COS
|
|
|
|
struct test_cos : public test_case {
|
|
|
|
const ggml_type type;
|
|
|
|
const std::array<int64_t, 4> ne;
|
|
|
|
|
|
|
|
std::string vars() override {
|
|
|
|
return VARS_TO_STR2(type, ne);
|
|
|
|
}
|
|
|
|
|
|
|
|
test_cos(ggml_type type = GGML_TYPE_F32,
|
2024-09-03 17:21:46 +02:00
|
|
|
std::array<int64_t, 4> ne = {10, 2, 2, 2})
|
2024-08-27 21:01:45 +02:00
|
|
|
: type(type), ne(ne) {}
|
|
|
|
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_param(ctx, a);
|
|
|
|
ggml_set_name(a, "a");
|
|
|
|
|
2024-08-27 21:01:45 +02:00
|
|
|
ggml_tensor * out = ggml_cos(ctx, a);
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(out, "out");
|
|
|
|
|
2024-08-27 21:01:45 +02:00
|
|
|
return out;
|
|
|
|
}
|
|
|
|
|
|
|
|
void initialize_tensors(ggml_context * ctx) override {
|
|
|
|
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
2024-09-03 17:21:46 +02:00
|
|
|
init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
|
2024-08-27 21:01:45 +02:00
|
|
|
}
|
|
|
|
}
|
2024-09-03 17:21:46 +02:00
|
|
|
|
|
|
|
double max_maa_err() override {
|
|
|
|
return 1e-3;
|
|
|
|
}
|
|
|
|
|
|
|
|
float grad_eps() override {
|
|
|
|
return 0.2f;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool grad_precise() override {
|
|
|
|
return true;
|
|
|
|
}
|
2024-08-27 21:01:45 +02:00
|
|
|
};
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
// GGML_OP_CLAMP
|
|
|
|
struct test_clamp : public test_case {
|
|
|
|
const ggml_type type;
|
|
|
|
const std::array<int64_t, 4> ne;
|
|
|
|
float min;
|
|
|
|
float max;
|
|
|
|
|
|
|
|
std::string vars() override {
|
|
|
|
return VARS_TO_STR4(type, ne, min, max);
|
|
|
|
}
|
|
|
|
|
|
|
|
test_clamp(ggml_type type = GGML_TYPE_F32,
|
2024-09-03 17:21:46 +02:00
|
|
|
std::array<int64_t, 4> ne = {10, 5, 4, 3},
|
2023-12-07 21:26:54 +01:00
|
|
|
float min = -0.5f, float max = 0.5f)
|
|
|
|
: type(type), ne(ne), min(min), max(max) {}
|
|
|
|
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(a, "a");
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
ggml_tensor * out = ggml_clamp(ctx, a, min, max);
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(out, "out");
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
return out;
|
|
|
|
}
|
2024-09-03 17:21:46 +02:00
|
|
|
|
|
|
|
float grad_eps() override {
|
|
|
|
return 1e-2f;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<float> grad_expect() override {
|
|
|
|
return {0.0f, 1.0f};
|
|
|
|
}
|
2023-12-07 21:26:54 +01:00
|
|
|
};
|
|
|
|
|
|
|
|
// GGML_OP_DIAG_MASK_INF
|
|
|
|
struct test_diag_mask_inf : public test_case {
|
|
|
|
const ggml_type type;
|
|
|
|
const std::array<int64_t, 4> ne;
|
|
|
|
const int n_past;
|
|
|
|
|
|
|
|
std::string vars() override {
|
|
|
|
return VARS_TO_STR3(type, ne, n_past);
|
|
|
|
}
|
|
|
|
|
|
|
|
test_diag_mask_inf(ggml_type type = GGML_TYPE_F32,
|
2024-09-03 17:21:46 +02:00
|
|
|
std::array<int64_t, 4> ne = {10, 10, 3, 2},
|
2023-12-07 21:26:54 +01:00
|
|
|
int n_past = 5)
|
|
|
|
: type(type), ne(ne), n_past(n_past) {}
|
|
|
|
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_param(ctx, a);
|
|
|
|
ggml_set_name(a, "a");
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
ggml_tensor * out = ggml_diag_mask_inf(ctx, a, n_past);
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(out, "out");
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
return out;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
// GGML_OP_SOFT_MAX
|
|
|
|
struct test_soft_max : public test_case {
|
|
|
|
const ggml_type type;
|
|
|
|
const std::array<int64_t, 4> ne;
|
2024-01-29 21:50:50 +01:00
|
|
|
const bool mask;
|
2024-02-17 22:04:16 +01:00
|
|
|
const float scale;
|
|
|
|
const float max_bias;
|
2023-12-07 21:26:54 +01:00
|
|
|
|
|
|
|
std::string vars() override {
|
2024-02-17 22:04:16 +01:00
|
|
|
return VARS_TO_STR5(type, ne, mask, scale, max_bias);
|
2023-12-07 21:26:54 +01:00
|
|
|
}
|
|
|
|
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
// the 1024 test with bias occasionally fails:
|
|
|
|
// SOFT_MAX(type=f32,ne=[1024,16,1,1],mask=1,scale=1.000000,max_bias=8.000000): [SOFT_MAX] NMSE = 0.000000103 > 0.000000100 FAIL
|
|
|
|
virtual double max_nmse_err() override {
|
|
|
|
return 1e-6;
|
|
|
|
}
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
test_soft_max(ggml_type type = GGML_TYPE_F32,
|
2024-09-03 17:21:46 +02:00
|
|
|
std::array<int64_t, 4> ne = {10, 5, 4, 3},
|
2024-02-17 22:04:16 +01:00
|
|
|
bool mask = false,
|
2024-01-29 21:50:50 +01:00
|
|
|
float scale = 1.0f,
|
2024-02-17 22:04:16 +01:00
|
|
|
float max_bias = 0.0f)
|
|
|
|
: type(type), ne(ne), mask(mask), scale(scale), max_bias(max_bias) {}
|
2023-12-07 21:26:54 +01:00
|
|
|
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_param(ctx, a);
|
|
|
|
ggml_set_name(a, "a");
|
|
|
|
|
2024-02-17 22:04:16 +01:00
|
|
|
ggml_tensor * mask = nullptr;
|
|
|
|
if (this->mask) {
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
mask = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, ne[0], ne[1]);
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(mask, "mask");
|
2024-02-17 22:04:16 +01:00
|
|
|
}
|
2024-09-03 17:21:46 +02:00
|
|
|
|
2024-05-11 09:32:41 +02:00
|
|
|
ggml_tensor * out = ggml_soft_max_ext(ctx, a, mask, scale, max_bias);
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(out, "out");
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
return out;
|
|
|
|
}
|
2024-09-03 17:21:46 +02:00
|
|
|
|
|
|
|
bool grad_precise() override {
|
|
|
|
return true;
|
|
|
|
}
|
2023-12-07 21:26:54 +01:00
|
|
|
};
|
|
|
|
|
2024-07-17 13:23:50 +02:00
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
// GGML_OP_ROPE
|
|
|
|
struct test_rope : public test_case {
|
|
|
|
const ggml_type type;
|
2024-05-29 19:17:31 +02:00
|
|
|
const std::array<int64_t, 4> ne_a;
|
2023-12-07 21:26:54 +01:00
|
|
|
int n_dims;
|
|
|
|
int mode;
|
2024-06-05 10:29:20 +02:00
|
|
|
int n_ctx; // used to generate positions
|
2024-05-29 19:17:31 +02:00
|
|
|
float fs; // freq_scale
|
|
|
|
float ef; // ext_factor
|
|
|
|
float af; // attn_factor
|
2024-05-22 10:01:35 +02:00
|
|
|
bool ff;
|
2024-05-29 19:17:31 +02:00
|
|
|
int v; // view (1 : non-contiguous a)
|
2023-12-07 21:26:54 +01:00
|
|
|
|
|
|
|
std::string vars() override {
|
2024-05-29 19:17:31 +02:00
|
|
|
return VARS_TO_STR10(type, ne_a, n_dims, mode, n_ctx, fs, ef, af, ff, v);
|
2023-12-07 21:26:54 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
test_rope(ggml_type type = GGML_TYPE_F32,
|
2024-09-03 17:21:46 +02:00
|
|
|
std::array<int64_t, 4> ne_a = {10, 5, 3, 1},
|
2024-05-29 19:17:31 +02:00
|
|
|
int n_dims = 10, int mode = 0, int n_ctx = 512, float fs = 1.0f, float ef = 0.0f, float af = 0.0f, bool ff = false, int v = 0)
|
|
|
|
: type(type), ne_a(ne_a), n_dims(n_dims), mode(mode), n_ctx(n_ctx), fs(fs), ef(ef), af(af), ff(ff), v(v) {}
|
2023-12-07 21:26:54 +01:00
|
|
|
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
2024-05-29 19:17:31 +02:00
|
|
|
ggml_tensor * a;
|
|
|
|
if (v & 1) {
|
|
|
|
auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
|
|
|
|
a = ggml_new_tensor(ctx, type, 4, ne.data());
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_param(ctx, a);
|
|
|
|
ggml_set_name(a, "a");
|
|
|
|
|
2024-05-29 19:17:31 +02:00
|
|
|
a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(a, "view_of_a");
|
2024-05-29 19:17:31 +02:00
|
|
|
} else {
|
|
|
|
a = ggml_new_tensor(ctx, type, 4, ne_a.data());
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_param(ctx, a);
|
|
|
|
ggml_set_name(a, "a");
|
2024-05-29 19:17:31 +02:00
|
|
|
}
|
2024-09-03 17:21:46 +02:00
|
|
|
|
llama : add Qwen2VL support + multimodal RoPE (#10361)
* Barebone Qwen2VL LLM convertor
* Add Qwen2VL cli entrypoint
* [WIP] add qwen2vl arch
* Verify m-rope output
* Add vl-rope/2d-rope support for qwen2vl ViT
* update qwen2vl cli tool
* update 5D tensor op workaround
* [WIP] qwen2vl vision model
* make batch and clip utils compatible with qwen2vl
* [WIP] create inference workflow, gguf convert script but fix
* correcting vision-rope behavior, add the missing last layer back to ViT
* add arg parser to qwen2vl_surgery
* replace variable size array with vector
* cuda-gdb cmake preset
* add fp32 mrope, vision rope kernel
* add fp16 support for qwen2vl and m-rope
* add `GGML_ROPE_TYPE_MROPE`, `GGML_ROPE_TYPE_VISION`
* fix rope op mode switching, out dated func args
* update `llama_hparams`
* update to keep up stream changes
* resolve linter, test errors
* add makefile entry, update speical image padding token
* add mrope unit test, fix few compiler warnings
* rename `mrope` related function, params
* minor updates on debug util, bug fixs
* add `m-rope` testcase to `test-backend-ops`
* Apply suggestions from code review
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* fix traililng whitespce
* store `llama_hparams.rope_sections` with fixed size array
* update position id tensor size check in GGML_OP_ROPE
* minor updates
* update `ggml_backend_*_supports_op` of unsupported backends
* remote old `rope_section` compare operator
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-12-14 13:43:46 +01:00
|
|
|
const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
|
|
|
|
const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
|
|
|
|
|
|
|
|
ggml_tensor * pos;
|
|
|
|
if (is_mrope || is_vision) {
|
|
|
|
pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2] * 4);
|
|
|
|
} else {
|
|
|
|
pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2]);
|
|
|
|
}
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(pos, "pos");
|
|
|
|
|
|
|
|
ggml_tensor * freq = nullptr;
|
|
|
|
if (ff) {
|
|
|
|
freq = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_dims/2);
|
|
|
|
ggml_set_name(freq, "freq");
|
|
|
|
}
|
|
|
|
|
llama : add Qwen2VL support + multimodal RoPE (#10361)
* Barebone Qwen2VL LLM convertor
* Add Qwen2VL cli entrypoint
* [WIP] add qwen2vl arch
* Verify m-rope output
* Add vl-rope/2d-rope support for qwen2vl ViT
* update qwen2vl cli tool
* update 5D tensor op workaround
* [WIP] qwen2vl vision model
* make batch and clip utils compatible with qwen2vl
* [WIP] create inference workflow, gguf convert script but fix
* correcting vision-rope behavior, add the missing last layer back to ViT
* add arg parser to qwen2vl_surgery
* replace variable size array with vector
* cuda-gdb cmake preset
* add fp32 mrope, vision rope kernel
* add fp16 support for qwen2vl and m-rope
* add `GGML_ROPE_TYPE_MROPE`, `GGML_ROPE_TYPE_VISION`
* fix rope op mode switching, out dated func args
* update `llama_hparams`
* update to keep up stream changes
* resolve linter, test errors
* add makefile entry, update speical image padding token
* add mrope unit test, fix few compiler warnings
* rename `mrope` related function, params
* minor updates on debug util, bug fixs
* add `m-rope` testcase to `test-backend-ops`
* Apply suggestions from code review
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* fix traililng whitespce
* store `llama_hparams.rope_sections` with fixed size array
* update position id tensor size check in GGML_OP_ROPE
* minor updates
* update `ggml_backend_*_supports_op` of unsupported backends
* remote old `rope_section` compare operator
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-12-14 13:43:46 +01:00
|
|
|
ggml_tensor * out;
|
|
|
|
if (is_mrope) {
|
|
|
|
if (is_vision) {
|
|
|
|
GGML_ASSERT(n_dims/4 > 0);
|
|
|
|
int rope_sections[4] = {n_dims/4, n_dims/4, 0, 0}; // Vision-RoPE only use first two dimension for image (x, y) coordinate
|
|
|
|
out = ggml_rope_multi(ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
|
|
|
|
} else {
|
|
|
|
GGML_ASSERT(n_dims/3 > 0);
|
|
|
|
int rope_sections[4] = {n_dims/3, n_dims/3, n_dims/3, 0};
|
|
|
|
out = ggml_rope_multi(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
out = ggml_rope_ext(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
|
|
|
|
}
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(out, "out");
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
return out;
|
|
|
|
}
|
|
|
|
|
|
|
|
void initialize_tensors(ggml_context * ctx) override {
|
|
|
|
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
|
|
|
if (t->type == GGML_TYPE_I32) {
|
|
|
|
// pos
|
llama : add Qwen2VL support + multimodal RoPE (#10361)
* Barebone Qwen2VL LLM convertor
* Add Qwen2VL cli entrypoint
* [WIP] add qwen2vl arch
* Verify m-rope output
* Add vl-rope/2d-rope support for qwen2vl ViT
* update qwen2vl cli tool
* update 5D tensor op workaround
* [WIP] qwen2vl vision model
* make batch and clip utils compatible with qwen2vl
* [WIP] create inference workflow, gguf convert script but fix
* correcting vision-rope behavior, add the missing last layer back to ViT
* add arg parser to qwen2vl_surgery
* replace variable size array with vector
* cuda-gdb cmake preset
* add fp32 mrope, vision rope kernel
* add fp16 support for qwen2vl and m-rope
* add `GGML_ROPE_TYPE_MROPE`, `GGML_ROPE_TYPE_VISION`
* fix rope op mode switching, out dated func args
* update `llama_hparams`
* update to keep up stream changes
* resolve linter, test errors
* add makefile entry, update speical image padding token
* add mrope unit test, fix few compiler warnings
* rename `mrope` related function, params
* minor updates on debug util, bug fixs
* add `m-rope` testcase to `test-backend-ops`
* Apply suggestions from code review
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* fix traililng whitespce
* store `llama_hparams.rope_sections` with fixed size array
* update position id tensor size check in GGML_OP_ROPE
* minor updates
* update `ggml_backend_*_supports_op` of unsupported backends
* remote old `rope_section` compare operator
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-12-14 13:43:46 +01:00
|
|
|
const int num_pos_ids = (mode & GGML_ROPE_TYPE_MROPE) ? ne_a[2] * 4 : ne_a[2];
|
|
|
|
std::vector<int> data(num_pos_ids);
|
|
|
|
for (int i = 0; i < num_pos_ids; i++) {
|
2023-12-07 21:26:54 +01:00
|
|
|
data[i] = rand() % n_ctx;
|
|
|
|
}
|
llama : add Qwen2VL support + multimodal RoPE (#10361)
* Barebone Qwen2VL LLM convertor
* Add Qwen2VL cli entrypoint
* [WIP] add qwen2vl arch
* Verify m-rope output
* Add vl-rope/2d-rope support for qwen2vl ViT
* update qwen2vl cli tool
* update 5D tensor op workaround
* [WIP] qwen2vl vision model
* make batch and clip utils compatible with qwen2vl
* [WIP] create inference workflow, gguf convert script but fix
* correcting vision-rope behavior, add the missing last layer back to ViT
* add arg parser to qwen2vl_surgery
* replace variable size array with vector
* cuda-gdb cmake preset
* add fp32 mrope, vision rope kernel
* add fp16 support for qwen2vl and m-rope
* add `GGML_ROPE_TYPE_MROPE`, `GGML_ROPE_TYPE_VISION`
* fix rope op mode switching, out dated func args
* update `llama_hparams`
* update to keep up stream changes
* resolve linter, test errors
* add makefile entry, update speical image padding token
* add mrope unit test, fix few compiler warnings
* rename `mrope` related function, params
* minor updates on debug util, bug fixs
* add `m-rope` testcase to `test-backend-ops`
* Apply suggestions from code review
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* fix traililng whitespce
* store `llama_hparams.rope_sections` with fixed size array
* update position id tensor size check in GGML_OP_ROPE
* minor updates
* update `ggml_backend_*_supports_op` of unsupported backends
* remote old `rope_section` compare operator
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-12-14 13:43:46 +01:00
|
|
|
ggml_backend_tensor_set(t, data.data(), 0, num_pos_ids * sizeof(int));
|
2023-12-07 21:26:54 +01:00
|
|
|
} else {
|
2024-05-22 10:01:35 +02:00
|
|
|
if (t->ne[0] == n_dims/2) {
|
|
|
|
// frequency factors in the range [0.9f, 1.1f]
|
|
|
|
init_tensor_uniform(t, 0.9f, 1.1f);
|
|
|
|
} else {
|
|
|
|
init_tensor_uniform(t);
|
|
|
|
}
|
2023-12-07 21:26:54 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2024-09-03 17:21:46 +02:00
|
|
|
|
|
|
|
double max_maa_err() override {
|
|
|
|
return 1e-3;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool grad_precise() override {
|
|
|
|
return true;
|
|
|
|
}
|
2023-12-07 21:26:54 +01:00
|
|
|
};
|
|
|
|
|
2024-01-31 14:10:15 +01:00
|
|
|
// GGML_OP_POOL2D
|
|
|
|
struct test_pool2d : public test_case {
|
|
|
|
enum ggml_op_pool pool_type;
|
|
|
|
const ggml_type type_input;
|
|
|
|
const std::array<int64_t, 4> ne_input;
|
|
|
|
// kernel size
|
|
|
|
const int k0;
|
|
|
|
const int k1;
|
|
|
|
// stride
|
|
|
|
const int s0;
|
|
|
|
const int s1;
|
|
|
|
// padding
|
|
|
|
const int p0;
|
|
|
|
const int p1;
|
|
|
|
|
|
|
|
std::string vars() override {
|
|
|
|
return VARS_TO_STR9(pool_type, type_input, ne_input, k0, k1, s0, s1, p0, p1);
|
|
|
|
}
|
|
|
|
|
|
|
|
test_pool2d(ggml_op_pool pool_type = GGML_OP_POOL_AVG,
|
|
|
|
ggml_type type_input = GGML_TYPE_F32,
|
|
|
|
std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
|
|
|
|
int k0 = 3, int k1 = 3,
|
|
|
|
int s0 = 1, int s1 = 1,
|
|
|
|
int p0 = 1, int p1 = 1)
|
|
|
|
: pool_type(pool_type), type_input(type_input), ne_input(ne_input), k0(k0), k1(k1), s0(s0), s1(s1), p0(p0), p1(p1) {}
|
|
|
|
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
|
|
ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_param(ctx, input);
|
|
|
|
ggml_set_name(input, "input");
|
|
|
|
|
2024-01-31 14:10:15 +01:00
|
|
|
ggml_tensor * out = ggml_pool_2d(ctx, input, pool_type, k0, k1, s0, s1, p0, p1);
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(out, "out");
|
|
|
|
|
2024-01-31 14:10:15 +01:00
|
|
|
return out;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2024-07-02 18:09:52 +02:00
|
|
|
// GGML_OP_CONV_TRANSPOSE_1D
|
|
|
|
struct test_conv_transpose_1d : public test_case {
|
|
|
|
const std::array<int64_t, 4> ne_input;
|
|
|
|
const std::array<int64_t, 4> ne_kernel;
|
|
|
|
|
2024-07-08 09:39:36 +02:00
|
|
|
const int s0; // stride
|
|
|
|
const int p0; // padding
|
|
|
|
const int d0; // dilation
|
2024-07-02 18:09:52 +02:00
|
|
|
|
|
|
|
std::string vars() override {
|
|
|
|
return VARS_TO_STR5(ne_input, ne_kernel, s0, p0, d0);
|
|
|
|
}
|
|
|
|
|
|
|
|
test_conv_transpose_1d(std::array<int64_t, 4> ne_input = {197, 32, 1, 1}, // [input_width, input_height, input_channels, 1]
|
|
|
|
std::array<int64_t, 4> ne_kernel = {16, 32, 32, 1}, // [kernel_width, kernel_height, input_channels, 1]
|
|
|
|
int s0 = 1, int p0 = 0, int d0 = 1)
|
|
|
|
: ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), p0(p0), d0(d0) {}
|
|
|
|
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
|
|
ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(input, "input");
|
|
|
|
|
2024-07-02 18:09:52 +02:00
|
|
|
ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data());
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(kernel, "kernel");
|
|
|
|
|
2024-07-02 18:09:52 +02:00
|
|
|
ggml_tensor * out = ggml_conv_transpose_1d(ctx, kernel, input, s0, p0, d0);
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(out, "out");
|
|
|
|
|
2024-07-02 18:09:52 +02:00
|
|
|
return out;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
// GGML_OP_IM2COL
|
|
|
|
struct test_im2col : public test_case {
|
|
|
|
const ggml_type type_input;
|
|
|
|
const ggml_type type_kernel;
|
2024-01-31 14:10:15 +01:00
|
|
|
const ggml_type dst_type;
|
2023-12-07 21:26:54 +01:00
|
|
|
const std::array<int64_t, 4> ne_input;
|
|
|
|
const std::array<int64_t, 4> ne_kernel;
|
|
|
|
// stride
|
|
|
|
const int s0;
|
|
|
|
const int s1;
|
|
|
|
// padding
|
|
|
|
const int p0;
|
|
|
|
const int p1;
|
2024-07-02 18:09:52 +02:00
|
|
|
// dilation
|
2023-12-07 21:26:54 +01:00
|
|
|
const int d0;
|
|
|
|
const int d1;
|
|
|
|
// mode
|
|
|
|
const bool is_2D;
|
|
|
|
|
|
|
|
std::string vars() override {
|
2024-01-31 14:10:15 +01:00
|
|
|
return VARS_TO_STR12(type_input, type_kernel, dst_type, ne_input, ne_kernel, s0, s1, p0, p1, d0, d1, is_2D);
|
2023-12-07 21:26:54 +01:00
|
|
|
}
|
|
|
|
|
2024-01-31 14:10:15 +01:00
|
|
|
test_im2col(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32,
|
2023-12-07 21:26:54 +01:00
|
|
|
std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
|
|
|
|
std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
|
|
|
|
int s0 = 1, int s1 = 1,
|
|
|
|
int p0 = 1, int p1 = 1,
|
|
|
|
int d0 = 1, int d1 = 1,
|
|
|
|
bool is_2D = true)
|
2024-01-31 14:10:15 +01:00
|
|
|
: type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), p0(p0), p1(p1), d0(d0), d1(d1), is_2D(is_2D) {}
|
2023-12-07 21:26:54 +01:00
|
|
|
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
|
|
ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_param(ctx, input);
|
|
|
|
ggml_set_name(input, "input");
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(kernel, "kernel");
|
|
|
|
|
2024-01-31 14:10:15 +01:00
|
|
|
ggml_tensor * out = ggml_im2col(ctx, kernel, input, s0, s1, p0, p1, d0, d1, is_2D, dst_type);
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(out, "out");
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
return out;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
// GGML_OP_CONCAT
|
|
|
|
struct test_concat : public test_case {
|
|
|
|
const ggml_type type;
|
2024-05-28 10:04:19 +02:00
|
|
|
const std::array<int64_t, 4> ne_a;
|
|
|
|
const int64_t ne_b_d;
|
|
|
|
const int dim;
|
2024-05-29 14:38:26 +02:00
|
|
|
const int v; // view (1 << 0: non-cont a, 1 << 1: non-cont b)
|
2023-12-07 21:26:54 +01:00
|
|
|
|
|
|
|
std::string vars() override {
|
2024-05-29 14:38:26 +02:00
|
|
|
return VARS_TO_STR5(type, ne_a, ne_b_d, dim, v);
|
2023-12-07 21:26:54 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
test_concat(ggml_type type = GGML_TYPE_F32,
|
2024-09-03 17:21:46 +02:00
|
|
|
std::array<int64_t, 4> ne_a = {10, 5, 5, 5},
|
|
|
|
int64_t ne_b_d = 5,
|
2024-05-29 14:38:26 +02:00
|
|
|
int dim = 2, int v = 0)
|
|
|
|
: type(type), ne_a(ne_a), ne_b_d(ne_b_d), dim(dim), v(v) {}
|
2023-12-07 21:26:54 +01:00
|
|
|
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
2024-05-28 10:04:19 +02:00
|
|
|
auto ne_b = ne_a;
|
|
|
|
ne_b[dim] = ne_b_d;
|
2024-05-29 14:38:26 +02:00
|
|
|
ggml_tensor * a;
|
|
|
|
if (v & 1) {
|
|
|
|
auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
|
|
|
|
a = ggml_new_tensor(ctx, type, 4, ne.data());
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(a, "a");
|
|
|
|
|
2024-05-29 14:38:26 +02:00
|
|
|
a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(a, "view_of_a");
|
2024-05-29 14:38:26 +02:00
|
|
|
} else {
|
|
|
|
a = ggml_new_tensor(ctx, type, 4, ne_a.data());
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(a, "a");
|
2024-05-29 14:38:26 +02:00
|
|
|
}
|
|
|
|
ggml_tensor * b;
|
|
|
|
if (v & 2) {
|
|
|
|
auto ne = ne_b; ne[0] *= 3; ne[1] *= 2; ne[2] *= 4;
|
|
|
|
b = ggml_new_tensor(ctx, type, 4, ne.data());
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(b, "b");
|
|
|
|
|
2024-05-29 14:38:26 +02:00
|
|
|
b = ggml_view_4d(ctx, b, ne_b[0], ne_b[1], ne_b[2], ne_b[3], b->nb[1], b->nb[2], b->nb[3], 0);
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(b, "view_of_b");
|
2024-05-29 14:38:26 +02:00
|
|
|
} else {
|
|
|
|
b = ggml_new_tensor(ctx, type, 4, ne_b.data());
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(b, "b");
|
2024-05-29 14:38:26 +02:00
|
|
|
}
|
2024-09-03 17:21:46 +02:00
|
|
|
|
2024-05-28 10:04:19 +02:00
|
|
|
ggml_tensor * out = ggml_concat(ctx, a, b, dim);
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(out, "out");
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
return out;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
// GGML_OP_ARGSORT
|
|
|
|
struct test_argsort : public test_case {
|
|
|
|
const ggml_type type;
|
|
|
|
const std::array<int64_t, 4> ne;
|
|
|
|
ggml_sort_order order;
|
|
|
|
|
|
|
|
std::string vars() override {
|
|
|
|
return VARS_TO_STR3(type, ne, order);
|
|
|
|
}
|
|
|
|
|
|
|
|
test_argsort(ggml_type type = GGML_TYPE_F32,
|
|
|
|
std::array<int64_t, 4> ne = {16, 10, 10, 10},
|
2024-02-25 11:09:09 +01:00
|
|
|
ggml_sort_order order = GGML_SORT_ORDER_ASC)
|
2023-12-07 21:26:54 +01:00
|
|
|
: type(type), ne(ne), order(order) {}
|
|
|
|
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(a, "a");
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
ggml_tensor * out = ggml_argsort(ctx, a, order);
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(out, "out");
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
return out;
|
|
|
|
}
|
|
|
|
|
|
|
|
void initialize_tensors(ggml_context * ctx) override {
|
|
|
|
std::random_device rd;
|
|
|
|
std::default_random_engine rng(rd());
|
|
|
|
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
|
|
|
if (t->type == GGML_TYPE_I32) {
|
|
|
|
// indices
|
|
|
|
std::vector<int> data(ggml_nelements(t));
|
|
|
|
for (int i = 0; i < ggml_nelements(t); i++) {
|
|
|
|
data[i] = rand();
|
|
|
|
}
|
|
|
|
std::shuffle(data.begin(), data.end(), rng);
|
|
|
|
ggml_backend_tensor_set(t, data.data(), 0, ne[0]*ne[1]*ne[2]*ne[3] * sizeof(int));
|
|
|
|
} else if (t->type == GGML_TYPE_F32) {
|
|
|
|
// initialize with unique values to avoid ties
|
|
|
|
for (int64_t r = 0; r < ggml_nrows(t); r++) {
|
|
|
|
std::vector<float> data(t->ne[0]);
|
|
|
|
for (int i = 0; i < t->ne[0]; i++) {
|
|
|
|
data[i] = i;
|
|
|
|
}
|
|
|
|
std::shuffle(data.begin(), data.end(), rng);
|
|
|
|
ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
|
|
|
|
}
|
|
|
|
} else {
|
2024-07-27 04:41:55 +02:00
|
|
|
GGML_ABORT("fatal error");
|
2023-12-07 21:26:54 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2024-09-03 17:21:46 +02:00
|
|
|
// GGML_OP_SUM
|
|
|
|
struct test_sum : public test_case {
|
|
|
|
const ggml_type type;
|
|
|
|
const std::array<int64_t, 4> ne;
|
|
|
|
|
|
|
|
std::string vars() override {
|
|
|
|
return VARS_TO_STR2(type, ne);
|
|
|
|
}
|
|
|
|
|
|
|
|
test_sum(ggml_type type = GGML_TYPE_F32,
|
|
|
|
std::array<int64_t, 4> ne = {10, 5, 4, 3})
|
|
|
|
: type(type), ne(ne) {}
|
|
|
|
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
|
|
|
|
ggml_set_param(ctx, a);
|
|
|
|
ggml_set_name(a, "a");
|
|
|
|
|
|
|
|
ggml_tensor * out = ggml_sum(ctx, a);
|
|
|
|
ggml_set_name(out, "out");
|
|
|
|
|
|
|
|
return out;
|
|
|
|
}
|
|
|
|
|
|
|
|
float grad_eps() override {
|
|
|
|
return 0.1f * sqrtf(ne[0]*ne[1]*ne[2]*ne[3]);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
// GGML_OP_SUM_ROWS
|
|
|
|
struct test_sum_rows : public test_case {
|
|
|
|
const ggml_type type;
|
|
|
|
const std::array<int64_t, 4> ne;
|
|
|
|
|
|
|
|
std::string vars() override {
|
|
|
|
return VARS_TO_STR2(type, ne);
|
|
|
|
}
|
|
|
|
|
|
|
|
test_sum_rows(ggml_type type = GGML_TYPE_F32,
|
2024-09-03 17:21:46 +02:00
|
|
|
std::array<int64_t, 4> ne = {10, 5, 4, 3})
|
2023-12-07 21:26:54 +01:00
|
|
|
: type(type), ne(ne) {}
|
|
|
|
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_param(ctx, a);
|
|
|
|
ggml_set_name(a, "a");
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
ggml_tensor * out = ggml_sum_rows(ctx, a);
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(out, "out");
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
return out;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2024-11-16 21:17:59 +01:00
|
|
|
// GGML_OP_MEAN
|
|
|
|
struct test_mean : public test_case {
|
|
|
|
const ggml_type type;
|
|
|
|
const std::array<int64_t, 4> ne;
|
|
|
|
|
|
|
|
std::string vars() override {
|
|
|
|
return VARS_TO_STR2(type, ne);
|
|
|
|
}
|
|
|
|
|
|
|
|
test_mean(ggml_type type = GGML_TYPE_F32,
|
|
|
|
std::array<int64_t, 4> ne = {10, 5, 4, 3})
|
|
|
|
: type(type), ne(ne) {}
|
|
|
|
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
|
|
|
|
ggml_set_param(ctx, a);
|
|
|
|
ggml_set_name(a, "a");
|
|
|
|
|
|
|
|
ggml_tensor * out = ggml_mean(ctx, a);
|
|
|
|
ggml_set_name(out, "out");
|
|
|
|
|
|
|
|
return out;
|
|
|
|
}
|
|
|
|
|
|
|
|
float grad_eps() override {
|
|
|
|
return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2023-12-13 20:54:54 +01:00
|
|
|
// GGML_OP_UPSCALE
|
|
|
|
struct test_upscale : public test_case {
|
|
|
|
const ggml_type type;
|
|
|
|
const std::array<int64_t, 4> ne;
|
|
|
|
const int32_t scale_factor;
|
2024-05-15 10:52:33 +02:00
|
|
|
const bool transpose;
|
2023-12-13 20:54:54 +01:00
|
|
|
|
|
|
|
std::string vars() override {
|
2024-05-15 10:52:33 +02:00
|
|
|
return VARS_TO_STR4(type, ne, scale_factor, transpose);
|
2023-12-13 20:54:54 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
test_upscale(ggml_type type = GGML_TYPE_F32,
|
|
|
|
std::array<int64_t, 4> ne = {512, 512, 3, 1},
|
2024-05-15 10:52:33 +02:00
|
|
|
int32_t scale_factor = 2, bool transpose = false)
|
|
|
|
: type(type), ne(ne), scale_factor(scale_factor), transpose(transpose) {}
|
2023-12-13 20:54:54 +01:00
|
|
|
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(a, "a");
|
|
|
|
|
|
|
|
if (transpose) {
|
|
|
|
a = ggml_transpose(ctx, a);
|
|
|
|
ggml_set_name(a, "a_transposed");
|
|
|
|
}
|
|
|
|
|
2023-12-13 20:54:54 +01:00
|
|
|
ggml_tensor * out = ggml_upscale(ctx, a, scale_factor);
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(out, "out");
|
|
|
|
|
2023-12-13 20:54:54 +01:00
|
|
|
return out;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2024-05-15 10:52:33 +02:00
|
|
|
// GGML_OP_UPSCALE (ext)
|
|
|
|
struct test_upscale_ext : public test_case {
|
|
|
|
const ggml_type type;
|
|
|
|
const std::array<int64_t, 4> ne;
|
|
|
|
const std::array<int64_t, 4> ne_tgt;
|
|
|
|
|
|
|
|
std::string vars() override {
|
|
|
|
return VARS_TO_STR3(type, ne, ne_tgt);
|
|
|
|
}
|
|
|
|
|
|
|
|
test_upscale_ext(ggml_type type = GGML_TYPE_F32,
|
|
|
|
std::array<int64_t, 4> ne = {2, 5, 7, 11},
|
|
|
|
std::array<int64_t, 4> ne_tgt = {5, 7, 11, 13})
|
|
|
|
: type(type), ne(ne), ne_tgt(ne_tgt) {}
|
|
|
|
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(a, "a");
|
|
|
|
|
2024-05-15 10:52:33 +02:00
|
|
|
ggml_tensor * out = ggml_upscale_ext(ctx, a, ne_tgt[0], ne_tgt[1],ne_tgt[2], ne_tgt[3]);
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(out, "out");
|
|
|
|
|
2024-05-15 10:52:33 +02:00
|
|
|
return out;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2023-12-13 20:54:54 +01:00
|
|
|
// GGML_OP_GROUP_NORM
|
|
|
|
struct test_group_norm : public test_case {
|
|
|
|
const ggml_type type;
|
|
|
|
const std::array<int64_t, 4> ne;
|
|
|
|
const int32_t num_groups;
|
2024-08-06 09:26:46 +02:00
|
|
|
const float eps;
|
2023-12-13 20:54:54 +01:00
|
|
|
|
|
|
|
std::string vars() override {
|
|
|
|
return VARS_TO_STR3(type, ne, num_groups);
|
|
|
|
}
|
|
|
|
|
|
|
|
test_group_norm(ggml_type type = GGML_TYPE_F32,
|
|
|
|
std::array<int64_t, 4> ne = {64, 64, 320, 1},
|
2024-08-06 09:26:46 +02:00
|
|
|
int32_t num_groups = 32,
|
|
|
|
float eps = 1e-6f)
|
|
|
|
: type(type), ne(ne), num_groups(num_groups), eps(eps) {}
|
2023-12-13 20:54:54 +01:00
|
|
|
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(a, "a");
|
|
|
|
|
2024-08-06 09:26:46 +02:00
|
|
|
ggml_tensor * out = ggml_group_norm(ctx, a, num_groups, eps);
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(out, "out");
|
|
|
|
|
2023-12-13 20:54:54 +01:00
|
|
|
return out;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
// GGML_OP_ACC
|
|
|
|
struct test_acc : public test_case {
|
|
|
|
const ggml_type type;
|
|
|
|
const std::array<int64_t, 4> ne_a;
|
|
|
|
const std::array<int64_t, 4> ne_b;
|
|
|
|
|
|
|
|
std::string vars() override {
|
|
|
|
return VARS_TO_STR3(type, ne_a, ne_b);
|
|
|
|
}
|
|
|
|
|
|
|
|
test_acc(ggml_type type = GGML_TYPE_F32,
|
2024-09-03 17:21:46 +02:00
|
|
|
std::array<int64_t, 4> ne_a = {256, 17, 1, 1},
|
|
|
|
std::array<int64_t, 4> ne_b = {256, 16, 1, 1})
|
2023-12-13 20:54:54 +01:00
|
|
|
: type(type), ne_a(ne_a), ne_b(ne_b) {}
|
|
|
|
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_param(ctx, a);
|
|
|
|
ggml_set_name(a, "a");
|
|
|
|
|
2023-12-13 20:54:54 +01:00
|
|
|
ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_param(ctx, b);
|
|
|
|
ggml_set_name(b, "b");
|
|
|
|
|
2023-12-13 20:54:54 +01:00
|
|
|
ggml_tensor * out = ggml_acc(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], b->nb[1]);
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(out, "out");
|
|
|
|
|
2023-12-13 20:54:54 +01:00
|
|
|
return out;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
// GGML_OP_PAD
|
|
|
|
struct test_pad : public test_case {
|
|
|
|
const ggml_type type;
|
|
|
|
const std::array<int64_t, 4> ne_a;
|
|
|
|
const int pad_0;
|
|
|
|
const int pad_1;
|
|
|
|
|
|
|
|
std::string vars() override {
|
|
|
|
return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
|
|
|
|
}
|
|
|
|
|
|
|
|
test_pad(ggml_type type = GGML_TYPE_F32,
|
|
|
|
std::array<int64_t, 4> ne_a = {512, 512, 1, 1},
|
|
|
|
int pad_0 = 1, int pad_1 = 1)
|
|
|
|
: type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
|
|
|
|
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(a, "a");
|
|
|
|
|
2023-12-13 20:54:54 +01:00
|
|
|
ggml_tensor * out = ggml_pad(ctx, a, pad_0, pad_1, 0, 0);
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(out, "out");
|
|
|
|
|
2023-12-13 20:54:54 +01:00
|
|
|
return out;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2024-12-03 20:20:04 +01:00
|
|
|
// GGML_OP_PAD_REFLECT_1D
|
|
|
|
struct test_pad_reflect_1d : public test_case {
|
|
|
|
const ggml_type type;
|
|
|
|
const std::array<int64_t, 4> ne_a;
|
|
|
|
const int pad_0;
|
|
|
|
const int pad_1;
|
|
|
|
|
|
|
|
std::string vars() override {
|
|
|
|
return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
|
|
|
|
}
|
|
|
|
|
|
|
|
test_pad_reflect_1d(ggml_type type = GGML_TYPE_F32,
|
|
|
|
std::array<int64_t, 4> ne_a = {512, 34, 2, 1},
|
|
|
|
int pad_0 = 10, int pad_1 = 9)
|
|
|
|
: type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
|
|
|
|
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 2, ne_a.data());
|
|
|
|
ggml_set_name(a, "a");
|
|
|
|
|
|
|
|
ggml_tensor * out = ggml_pad_reflect_1d(ctx, a, pad_0, pad_1);
|
|
|
|
ggml_set_name(out, "out");
|
|
|
|
|
|
|
|
return out;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2024-03-03 13:23:52 +01:00
|
|
|
// GGML_OP_ARANGE
|
|
|
|
struct test_arange : public test_case {
|
|
|
|
const ggml_type type;
|
|
|
|
const float start;
|
|
|
|
const float stop;
|
|
|
|
const float step;
|
|
|
|
|
|
|
|
std::string vars() override {
|
|
|
|
return VARS_TO_STR4(type, start, stop, step);
|
|
|
|
}
|
|
|
|
|
|
|
|
test_arange(ggml_type type = GGML_TYPE_F32,
|
|
|
|
float start = 0.f, float stop = 10.f, float step = 1.f)
|
|
|
|
: type(type), start(start), stop(stop), step(step) {}
|
|
|
|
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
|
|
ggml_tensor * out = ggml_arange(ctx, start, stop, step);
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(out, "out");
|
|
|
|
|
2024-03-03 13:23:52 +01:00
|
|
|
return out;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
// GGML_OP_TIMESTEP_EMBEDDING
|
|
|
|
struct test_timestep_embedding : public test_case {
|
|
|
|
const ggml_type type;
|
|
|
|
const std::array<int64_t, 4> ne_a;
|
|
|
|
const int dim;
|
|
|
|
const int max_period;
|
|
|
|
|
|
|
|
std::string vars() override {
|
|
|
|
return VARS_TO_STR4(type, ne_a, dim, max_period);
|
|
|
|
}
|
|
|
|
|
|
|
|
test_timestep_embedding(ggml_type type = GGML_TYPE_F32,
|
|
|
|
std::array<int64_t, 4> ne_a = {2, 1, 1, 1},
|
|
|
|
int dim = 320, int max_period=10000)
|
|
|
|
: type(type), ne_a(ne_a), dim(dim), max_period(max_period) {}
|
|
|
|
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(a, "a");
|
|
|
|
|
2024-03-03 13:23:52 +01:00
|
|
|
ggml_tensor * out = ggml_timestep_embedding(ctx, a, dim, max_period);
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(out, "out");
|
|
|
|
|
2024-03-03 13:23:52 +01:00
|
|
|
return out;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2023-12-13 20:54:54 +01:00
|
|
|
// GGML_OP_LEAKY_RELU
|
|
|
|
struct test_leaky_relu : public test_case {
|
|
|
|
const ggml_type type;
|
|
|
|
const std::array<int64_t, 4> ne_a;
|
|
|
|
const float negative_slope;
|
|
|
|
|
|
|
|
std::string vars() override {
|
|
|
|
return VARS_TO_STR3(type, ne_a, negative_slope);
|
|
|
|
}
|
|
|
|
|
|
|
|
test_leaky_relu(ggml_type type = GGML_TYPE_F32,
|
2024-09-03 17:21:46 +02:00
|
|
|
std::array<int64_t, 4> ne_a = {10, 5, 4, 3},
|
2023-12-13 20:54:54 +01:00
|
|
|
float negative_slope = 0.1f)
|
|
|
|
: type(type), ne_a(ne_a), negative_slope(negative_slope) {}
|
|
|
|
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
|
|
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(a, "a");
|
|
|
|
|
2023-12-13 20:54:54 +01:00
|
|
|
ggml_tensor * out = ggml_leaky_relu(ctx, a, negative_slope, true);
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(out, "out");
|
|
|
|
|
2023-12-13 20:54:54 +01:00
|
|
|
return out;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
// GGML_OP_FLASH_ATTN_EXT
|
|
|
|
struct test_flash_attn_ext : public test_case {
|
|
|
|
const int64_t hs; // head size
|
|
|
|
const int64_t nh; // num heads
|
|
|
|
const int64_t kv; // kv size
|
|
|
|
const int64_t nb; // batch size
|
|
|
|
|
2024-05-14 18:09:30 +02:00
|
|
|
const bool mask; // use mask
|
|
|
|
|
2024-05-11 09:32:41 +02:00
|
|
|
const float max_bias; // ALiBi
|
2024-08-24 21:34:59 +02:00
|
|
|
const float logit_softcap; // Gemma 2
|
2024-05-11 09:32:41 +02:00
|
|
|
|
2024-06-01 08:44:14 +02:00
|
|
|
const ggml_type type_KV;
|
|
|
|
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
std::string vars() override {
|
2024-08-24 21:34:59 +02:00
|
|
|
return VARS_TO_STR8(hs, nh, kv, nb, mask, max_bias, logit_softcap, type_KV);
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
double max_nmse_err() override {
|
|
|
|
return 5e-4;
|
|
|
|
}
|
|
|
|
|
2024-11-13 07:58:57 +01:00
|
|
|
uint64_t op_flops(ggml_tensor * t) override {
|
|
|
|
GGML_UNUSED(t);
|
|
|
|
// Just counting matmul costs:
|
|
|
|
// Q*K^T is nb x hs x kv, P*V is nb x kv x hs, per head
|
|
|
|
return 2 * 2 * nh * nb * hs * kv;
|
|
|
|
}
|
|
|
|
|
2024-09-03 17:21:46 +02:00
|
|
|
test_flash_attn_ext(int64_t hs = 128, int64_t nh = 32, int64_t kv = 96, int64_t nb = 8,
|
|
|
|
bool mask = true, float max_bias = 0.0f, float logit_softcap = 0.0f, ggml_type type_KV = GGML_TYPE_F16)
|
2024-08-24 21:34:59 +02:00
|
|
|
: hs(hs), nh(nh), kv(kv), nb(nb), mask(mask), max_bias(max_bias), logit_softcap(logit_softcap), type_KV(type_KV) {}
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
2024-06-01 23:26:10 +02:00
|
|
|
const int64_t hs_padded = GGML_PAD(hs, ggml_blck_size(type_KV));
|
|
|
|
|
|
|
|
ggml_tensor * q = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, hs_padded, nb, nh, 1);
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(q, "q");
|
|
|
|
|
2024-06-01 23:26:10 +02:00
|
|
|
ggml_tensor * k = ggml_new_tensor_4d(ctx, type_KV, hs_padded, kv, nh, 1);
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(k, "k");
|
|
|
|
|
2024-06-01 23:26:10 +02:00
|
|
|
ggml_tensor * v = ggml_new_tensor_4d(ctx, type_KV, hs_padded, kv, nh, 1);
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(v, "v");
|
|
|
|
|
|
|
|
ggml_tensor * m = nullptr;
|
|
|
|
if (mask) {
|
|
|
|
m = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, kv, GGML_PAD(nb, GGML_KQ_MASK_PAD), 1, 1);
|
|
|
|
ggml_set_name(m, "m");
|
|
|
|
}
|
|
|
|
|
2024-08-24 21:34:59 +02:00
|
|
|
ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, m, 1.0f/sqrtf(hs), max_bias, logit_softcap);
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(out, "out");
|
|
|
|
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
return out;
|
|
|
|
}
|
2024-09-03 17:21:46 +02:00
|
|
|
|
|
|
|
bool grad_precise() override {
|
|
|
|
return true;
|
|
|
|
}
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
};
|
|
|
|
|
2024-08-27 21:01:45 +02:00
|
|
|
// GGML_OP_CROSS_ENTROPY_LOSS
|
|
|
|
struct test_cross_entropy_loss : public test_case {
|
|
|
|
const ggml_type type;
|
|
|
|
const std::array<int64_t, 4> ne;
|
|
|
|
|
|
|
|
std::string vars() override {
|
|
|
|
return VARS_TO_STR2(type, ne);
|
|
|
|
}
|
|
|
|
|
|
|
|
test_cross_entropy_loss(ggml_type type = GGML_TYPE_F32,
|
2024-09-03 17:21:46 +02:00
|
|
|
std::array<int64_t, 4> ne = {10, 5, 4, 3})
|
2024-08-27 21:01:45 +02:00
|
|
|
: type(type), ne(ne) {}
|
|
|
|
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
|
|
ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_param(ctx, logits);
|
|
|
|
ggml_set_name(logits, "logits");
|
|
|
|
|
2024-08-27 21:01:45 +02:00
|
|
|
ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
|
2024-09-03 17:21:46 +02:00
|
|
|
// The labels are assumed to be constant -> no gradients.
|
|
|
|
ggml_set_name(labels, "labels");
|
|
|
|
|
|
|
|
// Ensure labels add up to 1:
|
|
|
|
labels = ggml_soft_max(ctx, labels);
|
|
|
|
ggml_set_name(labels, "labels_normalized");
|
|
|
|
|
2024-08-27 21:01:45 +02:00
|
|
|
ggml_tensor * out = ggml_cross_entropy_loss(ctx, logits, labels);
|
2024-09-03 17:21:46 +02:00
|
|
|
ggml_set_name(out, "out");
|
|
|
|
|
2024-08-27 21:01:45 +02:00
|
|
|
return out;
|
|
|
|
}
|
2024-09-03 17:21:46 +02:00
|
|
|
|
|
|
|
void initialize_tensors(ggml_context * ctx) override {
|
|
|
|
// For larger abs. diffs between logits softmax is more linear, therefore more precise num. gradients.
|
|
|
|
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
|
|
|
init_tensor_uniform(t, -100.0f, 100.0f);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
float grad_eps() override {
|
|
|
|
return 1.0f;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool grad_precise() override {
|
|
|
|
return true;
|
|
|
|
}
|
2024-08-27 21:01:45 +02:00
|
|
|
};
|
|
|
|
|
2024-09-20 18:04:44 +02:00
|
|
|
// GGML_OP_OPT_STEP_ADAMW
|
|
|
|
struct test_opt_step_adamw : public test_case {
|
|
|
|
const ggml_type type;
|
|
|
|
const std::array<int64_t, 4> ne;
|
|
|
|
|
|
|
|
std::string vars() override {
|
2024-11-16 21:17:59 +01:00
|
|
|
return VARS_TO_STR2(type, ne);
|
2024-09-20 18:04:44 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
test_opt_step_adamw(ggml_type type = GGML_TYPE_F32,
|
2024-11-16 21:17:59 +01:00
|
|
|
std::array<int64_t, 4> ne = {10, 5, 4, 3})
|
|
|
|
: type(type), ne(ne) {}
|
2024-09-20 18:04:44 +02:00
|
|
|
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
|
|
ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
|
|
|
|
ggml_set_param(ctx, a); // Despite tensor a having gradients the output tensor will not.
|
|
|
|
ggml_set_name(a, "a");
|
|
|
|
|
2024-09-30 09:55:23 +02:00
|
|
|
ggml_tensor * grad = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
|
|
|
|
ggml_set_name(grad, "grad");
|
|
|
|
|
2024-11-16 21:17:59 +01:00
|
|
|
ggml_tensor * grad_m = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
|
|
|
|
ggml_set_name(grad_m, "grad_m");
|
|
|
|
|
|
|
|
ggml_tensor * grad_v = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
|
|
|
|
ggml_set_name(grad_v, "grad_v");
|
|
|
|
|
|
|
|
ggml_tensor * adamw_params = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 7);
|
|
|
|
ggml_set_name(adamw_params, "adamw_params");
|
|
|
|
|
|
|
|
ggml_tensor * out = ggml_opt_step_adamw(ctx, a, grad, grad_m, grad_v, adamw_params);
|
2024-09-20 18:04:44 +02:00
|
|
|
ggml_set_name(out, "out");
|
|
|
|
|
|
|
|
return out;
|
|
|
|
}
|
|
|
|
|
|
|
|
void initialize_tensors(ggml_context * ctx) override {
|
|
|
|
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
2024-11-16 21:17:59 +01:00
|
|
|
init_tensor_uniform(t, 0.0f, 1.0f); // grad_v and adamw_params need non-negative values.
|
2024-09-20 18:04:44 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
bool grad_precise() override {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2024-01-29 21:50:50 +01:00
|
|
|
enum llm_norm_type {
|
|
|
|
LLM_NORM,
|
|
|
|
LLM_NORM_RMS,
|
|
|
|
};
|
|
|
|
|
|
|
|
struct llama_hparams {
|
|
|
|
uint32_t n_vocab;
|
|
|
|
uint32_t n_embd;
|
|
|
|
uint32_t n_head;
|
|
|
|
uint32_t n_head_kv;
|
|
|
|
static constexpr uint32_t n_layer = 1;
|
|
|
|
uint32_t n_rot;
|
|
|
|
uint32_t n_embd_head; // dimension of values (d_v)
|
|
|
|
uint32_t n_ff;
|
|
|
|
|
|
|
|
float f_norm_eps;
|
|
|
|
float f_norm_rms_eps;
|
|
|
|
|
|
|
|
// cparams
|
|
|
|
static constexpr uint32_t n_ctx = 512; // user-specified context size
|
2024-06-05 10:29:20 +02:00
|
|
|
static constexpr uint32_t n_ctx_orig = n_ctx;
|
2024-01-29 21:50:50 +01:00
|
|
|
|
|
|
|
// batch
|
|
|
|
int32_t n_tokens;
|
|
|
|
|
|
|
|
// llm_build_context
|
|
|
|
static constexpr int32_t n_kv = 32; // size of KV cache to consider (n_kv <= n_ctx
|
|
|
|
static constexpr int32_t kv_head = 1; // index of where we store new KV data in the cache
|
|
|
|
|
|
|
|
uint32_t n_embd_gqa() const { // dimension of key embeddings across all k-v heads
|
|
|
|
return n_embd_head * n_head_kv;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
// LLM base class
|
|
|
|
struct test_llm : public test_case {
|
|
|
|
llama_hparams hp;
|
|
|
|
|
|
|
|
protected:
|
|
|
|
test_llm(llama_hparams hp)
|
|
|
|
: hp(std::move(hp)) {
|
|
|
|
}
|
|
|
|
|
|
|
|
public:
|
|
|
|
struct ggml_tensor * llm_build_norm(
|
|
|
|
struct ggml_context * ctx,
|
|
|
|
struct ggml_tensor * cur,
|
|
|
|
struct ggml_tensor * mw,
|
|
|
|
struct ggml_tensor * mb,
|
|
|
|
llm_norm_type type) {
|
|
|
|
switch (type) {
|
|
|
|
case LLM_NORM: cur = ggml_norm (ctx, cur, hp.f_norm_eps); break;
|
|
|
|
case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hp.f_norm_rms_eps); break;
|
|
|
|
}
|
|
|
|
cur = ggml_mul(ctx, cur, mw);
|
|
|
|
if (mb) {
|
|
|
|
cur = ggml_add(ctx, cur, mb);
|
|
|
|
}
|
|
|
|
return cur;
|
|
|
|
}
|
|
|
|
|
|
|
|
void llm_build_kv_store(
|
|
|
|
struct ggml_context * ctx,
|
|
|
|
struct ggml_tensor * k_l,
|
|
|
|
struct ggml_tensor * v_l,
|
|
|
|
struct ggml_tensor * k_cur,
|
|
|
|
struct ggml_tensor * v_cur) {
|
|
|
|
// compute the transposed [n_tokens, n_embd] V matrix
|
|
|
|
struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, hp.n_embd_gqa(), hp.n_tokens));
|
|
|
|
|
|
|
|
struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, k_l, hp.n_tokens*hp.n_embd_gqa(),
|
|
|
|
(ggml_row_size(k_l->type, hp.n_embd_gqa()))*hp.kv_head);
|
|
|
|
|
|
|
|
struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, v_l, hp.n_tokens, hp.n_embd_gqa(),
|
|
|
|
( hp.n_ctx)*ggml_element_size(v_l),
|
|
|
|
(hp.kv_head)*ggml_element_size(v_l));
|
|
|
|
|
|
|
|
// important: storing RoPE-ed version of K in the KV cache!
|
|
|
|
ggml_cpy(ctx, k_cur, k_cache_view);
|
|
|
|
ggml_cpy(ctx, v_cur_t, v_cache_view);
|
|
|
|
}
|
|
|
|
|
|
|
|
struct ggml_tensor * llm_build_kqv(
|
|
|
|
struct ggml_context * ctx,
|
|
|
|
struct ggml_tensor * k_l,
|
|
|
|
struct ggml_tensor * v_l,
|
|
|
|
struct ggml_tensor * q_cur,
|
|
|
|
struct ggml_tensor * kq_mask,
|
|
|
|
float kq_scale) {
|
|
|
|
struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
|
|
|
|
|
|
|
|
struct ggml_tensor * k =
|
|
|
|
ggml_view_3d(ctx, k_l,
|
|
|
|
hp.n_embd_head, hp.n_kv, hp.n_head_kv,
|
|
|
|
ggml_row_size(k_l->type, hp.n_embd_gqa()),
|
|
|
|
ggml_row_size(k_l->type, hp.n_embd_head),
|
|
|
|
0);
|
|
|
|
|
|
|
|
struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
|
|
|
|
|
2024-05-11 09:32:41 +02:00
|
|
|
kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, 0.0f);
|
2024-01-29 21:50:50 +01:00
|
|
|
|
|
|
|
// split cached v into n_head heads
|
|
|
|
struct ggml_tensor * v =
|
|
|
|
ggml_view_3d(ctx, v_l,
|
|
|
|
hp.n_kv, hp.n_embd_head, hp.n_head_kv,
|
|
|
|
ggml_element_size(v_l)*hp.n_ctx,
|
|
|
|
ggml_element_size(v_l)*hp.n_ctx*hp.n_embd_head,
|
|
|
|
0);
|
|
|
|
|
|
|
|
struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
|
|
|
|
|
|
|
|
struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
|
|
|
|
|
|
|
|
struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, hp.n_embd_head*hp.n_head, hp.n_tokens);
|
|
|
|
|
|
|
|
struct ggml_tensor * wo = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
|
|
|
|
cur = ggml_mul_mat(ctx, wo, cur);
|
|
|
|
|
|
|
|
return cur;
|
|
|
|
}
|
|
|
|
|
|
|
|
void initialize_tensors(ggml_context * ctx) override {
|
|
|
|
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
|
|
|
if (t->type == GGML_TYPE_I32) {
|
|
|
|
// pos
|
|
|
|
std::vector<int> data(hp.n_tokens);
|
|
|
|
for (int i = 0; i < hp.n_tokens; i++) {
|
|
|
|
data[i] = rand() % hp.n_ctx;
|
|
|
|
}
|
|
|
|
ggml_backend_tensor_set(t, data.data(), 0, hp.n_tokens * sizeof(int));
|
|
|
|
} else {
|
|
|
|
init_tensor_uniform(t);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
// Llama
|
|
|
|
struct test_llama : public test_llm {
|
|
|
|
static constexpr float freq_base = 10000.0f;
|
|
|
|
static constexpr float freq_scale = 1.0f;
|
|
|
|
static constexpr float ext_factor = 0.0f;
|
|
|
|
static constexpr float attn_factor = 1.0f;
|
|
|
|
static constexpr float beta_fast = 32.0f;
|
|
|
|
static constexpr float beta_slow = 1.0f;
|
|
|
|
|
|
|
|
std::string op_desc(ggml_tensor * t) override {
|
|
|
|
GGML_UNUSED(t);
|
|
|
|
return "LLAMA";
|
|
|
|
}
|
|
|
|
|
|
|
|
std::string vars() override {
|
|
|
|
auto n_tokens = hp.n_tokens;
|
|
|
|
return VARS_TO_STR1(n_tokens);
|
|
|
|
}
|
|
|
|
|
|
|
|
double max_nmse_err() override {
|
|
|
|
return 2e-3;
|
|
|
|
}
|
|
|
|
|
|
|
|
test_llama(int n_tokens = 1)
|
|
|
|
: test_llm({
|
|
|
|
/*n_vocab =*/ 32000,
|
|
|
|
/*n_embd =*/ 3200,
|
|
|
|
/*n_head =*/ 32,
|
|
|
|
/*n_head_kv =*/ 32,
|
|
|
|
/*n_rot =*/ 100,
|
|
|
|
/*n_embd_head =*/ 100,
|
|
|
|
/*n_ff =*/ 8640,
|
|
|
|
/*f_norm_eps =*/ 0.f,
|
|
|
|
/*f_norm_rms_eps =*/ 1e-5f,
|
|
|
|
/*n_tokens =*/ n_tokens,
|
|
|
|
}) {
|
|
|
|
}
|
|
|
|
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
|
|
struct ggml_tensor * cur;
|
|
|
|
struct ggml_tensor * inpL;
|
|
|
|
|
|
|
|
inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
|
|
|
|
|
|
|
|
// inp_pos - contains the positions
|
|
|
|
struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
|
|
|
|
|
|
|
|
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
|
2024-01-29 21:50:50 +01:00
|
|
|
|
|
|
|
ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
|
|
|
|
ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
|
|
|
|
|
|
|
|
for (uint32_t il = 0; il < hp.n_layer; ++il) {
|
|
|
|
struct ggml_tensor * inpSA = inpL;
|
|
|
|
|
|
|
|
// norm
|
|
|
|
ggml_tensor * attn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
|
|
|
|
cur = llm_build_norm(ctx, inpL, attn_norm, nullptr, LLM_NORM_RMS);
|
|
|
|
|
|
|
|
// self-attention
|
|
|
|
{
|
|
|
|
ggml_tensor * wq = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
|
|
|
|
ggml_tensor * wk = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
|
|
|
|
ggml_tensor * wv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
|
|
|
|
|
|
|
|
// compute Q and K and RoPE them
|
|
|
|
struct ggml_tensor * Qcur = ggml_mul_mat(ctx, wq, cur);
|
|
|
|
struct ggml_tensor * Kcur = ggml_mul_mat(ctx, wk, cur);
|
|
|
|
struct ggml_tensor * Vcur = ggml_mul_mat(ctx, wv, cur);
|
|
|
|
|
2024-05-21 22:28:32 +02:00
|
|
|
Qcur = ggml_rope_ext(
|
|
|
|
ctx, ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens), inp_pos, nullptr,
|
2024-06-05 10:29:20 +02:00
|
|
|
hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
|
2024-01-29 21:50:50 +01:00
|
|
|
ext_factor, attn_factor, beta_fast, beta_slow
|
|
|
|
);
|
|
|
|
|
2024-05-21 22:28:32 +02:00
|
|
|
Kcur = ggml_rope_ext(
|
|
|
|
ctx, ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens), inp_pos, nullptr,
|
2024-06-05 10:29:20 +02:00
|
|
|
hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
|
2024-01-29 21:50:50 +01:00
|
|
|
ext_factor, attn_factor, beta_fast, beta_slow
|
|
|
|
);
|
|
|
|
|
|
|
|
llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
|
|
|
|
|
|
|
|
cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
|
|
|
|
}
|
|
|
|
|
|
|
|
struct ggml_tensor * ffn_inp = ggml_add(ctx, cur, inpSA);
|
|
|
|
|
|
|
|
// feed-forward network
|
|
|
|
ggml_tensor * ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
|
|
|
|
cur = llm_build_norm(ctx, ffn_inp, ffn_norm, nullptr, LLM_NORM_RMS);
|
|
|
|
|
|
|
|
ggml_tensor * ffn_gate = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
|
|
|
|
ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
|
|
|
|
ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
|
|
|
|
struct ggml_tensor * tmp = ggml_mul_mat(ctx, ffn_up, cur);
|
|
|
|
cur = ggml_mul_mat(ctx, ffn_gate, cur);
|
|
|
|
cur = ggml_silu(ctx, cur);
|
|
|
|
cur = ggml_mul(ctx, cur, tmp);
|
|
|
|
cur = ggml_mul_mat(ctx, ffn_down, cur);
|
|
|
|
|
|
|
|
cur = ggml_add(ctx, cur, ffn_inp);
|
|
|
|
|
|
|
|
// input for next layer
|
|
|
|
inpL = cur;
|
|
|
|
}
|
|
|
|
|
|
|
|
cur = inpL;
|
|
|
|
|
|
|
|
ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
|
|
|
|
cur = llm_build_norm(ctx, cur, output_norm, nullptr, LLM_NORM_RMS);
|
|
|
|
|
|
|
|
// lm_head
|
|
|
|
ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_vocab);
|
|
|
|
cur = ggml_mul_mat(ctx, output, cur);
|
|
|
|
|
|
|
|
return cur;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
// Falcon
|
|
|
|
struct test_falcon : public test_llm {
|
|
|
|
static constexpr float freq_base = 10000.0f;
|
|
|
|
static constexpr float freq_scale = 1.0f;
|
|
|
|
static constexpr float ext_factor = 0.0f;
|
|
|
|
static constexpr float attn_factor = 1.0f;
|
|
|
|
static constexpr float beta_fast = 32.0f;
|
|
|
|
static constexpr float beta_slow = 1.0f;
|
|
|
|
|
|
|
|
std::string op_desc(ggml_tensor * t) override {
|
|
|
|
GGML_UNUSED(t);
|
|
|
|
return "FALCON";
|
|
|
|
}
|
|
|
|
|
|
|
|
std::string vars() override {
|
|
|
|
auto n_tokens = hp.n_tokens;
|
|
|
|
return VARS_TO_STR1(n_tokens);
|
|
|
|
}
|
|
|
|
|
|
|
|
double max_nmse_err() override {
|
|
|
|
return 2e-3;
|
|
|
|
}
|
|
|
|
|
|
|
|
test_falcon(int n_tokens = 1)
|
|
|
|
: test_llm({
|
|
|
|
/*n_vocab =*/ 32000,
|
|
|
|
/*n_embd =*/ 3200,
|
|
|
|
/*n_head =*/ 50,
|
|
|
|
/*n_head_kv =*/ 1,
|
|
|
|
/*n_rot =*/ 64,
|
|
|
|
/*n_embd_head =*/ 64,
|
|
|
|
/*n_ff =*/ 8640,
|
|
|
|
/*f_norm_eps =*/ 1e-5f,
|
|
|
|
/*f_norm_rms_eps =*/ 0.f,
|
|
|
|
/*n_tokens =*/ n_tokens,
|
|
|
|
}) {
|
|
|
|
}
|
|
|
|
|
|
|
|
ggml_tensor * build_graph(ggml_context * ctx) override {
|
|
|
|
struct ggml_tensor * cur;
|
|
|
|
struct ggml_tensor * inpL;
|
|
|
|
|
|
|
|
inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
|
|
|
|
|
|
|
|
// inp_pos - contains the positions
|
|
|
|
struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
|
|
|
|
|
|
|
|
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
|
2024-01-29 21:50:50 +01:00
|
|
|
|
|
|
|
ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
|
|
|
|
ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
|
|
|
|
|
|
|
|
for (uint32_t il = 0; il < hp.n_layer; ++il) {
|
|
|
|
// norm
|
|
|
|
ggml_tensor * attn_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
|
|
|
|
ggml_tensor * attn_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
|
|
|
|
ggml_tensor * attn_norm = llm_build_norm(ctx, inpL, attn_norm_w, attn_norm_b, LLM_NORM);
|
|
|
|
|
|
|
|
// self-attention
|
|
|
|
{
|
|
|
|
cur = attn_norm;
|
|
|
|
|
|
|
|
ggml_tensor * wqkv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd + 2*hp.n_embd_gqa());
|
|
|
|
|
|
|
|
cur = ggml_mul_mat(ctx, wqkv, cur);
|
|
|
|
|
|
|
|
struct ggml_tensor * Qcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd, hp.n_tokens, cur->nb[1], 0*sizeof(float)*(hp.n_embd)));
|
|
|
|
struct ggml_tensor * Kcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd)));
|
|
|
|
struct ggml_tensor * Vcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd + hp.n_embd_gqa())));
|
|
|
|
|
|
|
|
Qcur = ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens);
|
|
|
|
Kcur = ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens);
|
|
|
|
|
|
|
|
// using mode = 2 for neox mode
|
2024-05-21 22:28:32 +02:00
|
|
|
Qcur = ggml_rope_ext(
|
2024-06-05 10:29:20 +02:00
|
|
|
ctx, Qcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
|
2024-01-29 21:50:50 +01:00
|
|
|
freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
|
|
|
|
);
|
|
|
|
|
2024-05-21 22:28:32 +02:00
|
|
|
Kcur = ggml_rope_ext(
|
2024-06-05 10:29:20 +02:00
|
|
|
ctx, Kcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
|
2024-01-29 21:50:50 +01:00
|
|
|
freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
|
|
|
|
);
|
|
|
|
|
|
|
|
llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
|
|
|
|
|
|
|
|
cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
|
|
|
|
}
|
|
|
|
|
|
|
|
struct ggml_tensor * ffn_inp = cur;
|
|
|
|
|
|
|
|
// feed forward
|
|
|
|
{
|
|
|
|
ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
|
|
|
|
ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
|
|
|
|
cur = attn_norm;
|
|
|
|
cur = ggml_mul_mat(ctx, ffn_up, cur);
|
|
|
|
cur = ggml_gelu(ctx, cur);
|
|
|
|
cur = ggml_mul_mat(ctx, ffn_down, cur);
|
|
|
|
}
|
|
|
|
|
|
|
|
cur = ggml_add(ctx, cur, ffn_inp);
|
|
|
|
|
|
|
|
cur = ggml_add(ctx, cur, inpL);
|
|
|
|
|
|
|
|
// input for next layer
|
|
|
|
inpL = cur;
|
|
|
|
}
|
|
|
|
|
|
|
|
cur = inpL;
|
|
|
|
|
|
|
|
ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
|
|
|
|
ggml_tensor * output_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
|
|
|
|
cur = llm_build_norm(ctx, cur, output_norm, output_norm_b, LLM_NORM);
|
|
|
|
|
|
|
|
// lm_head
|
|
|
|
ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q8_0, hp.n_embd, hp.n_vocab);
|
|
|
|
cur = ggml_mul_mat(ctx, output, cur);
|
|
|
|
|
|
|
|
return cur;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2024-09-03 17:21:46 +02:00
|
|
|
|
|
|
|
// ###########################################
|
|
|
|
// ## Section 3: GGML Op Test Instantiation ##
|
|
|
|
// ###########################################
|
2024-09-28 14:32:46 +02:00
|
|
|
static const ggml_type all_types[] = {
|
|
|
|
GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16,
|
|
|
|
GGML_TYPE_Q4_0, GGML_TYPE_Q4_1,
|
|
|
|
GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
|
|
|
|
GGML_TYPE_Q8_0,
|
|
|
|
GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
|
|
|
|
GGML_TYPE_Q4_K, GGML_TYPE_Q5_K,
|
|
|
|
GGML_TYPE_Q6_K,
|
|
|
|
// GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
|
|
|
|
GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
|
|
|
|
GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
|
|
|
|
GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
|
|
|
|
};
|
|
|
|
|
|
|
|
static const ggml_type base_types[] = {
|
|
|
|
GGML_TYPE_F32, GGML_TYPE_F16,
|
2024-11-29 15:25:39 +01:00
|
|
|
GGML_TYPE_Q8_0, // for I8MM tests
|
2024-09-28 14:32:46 +02:00
|
|
|
GGML_TYPE_Q4_0,
|
2024-11-29 15:25:39 +01:00
|
|
|
GGML_TYPE_Q4_1, // for I8MM tests
|
2024-09-28 14:32:46 +02:00
|
|
|
GGML_TYPE_Q4_K,
|
|
|
|
GGML_TYPE_IQ2_XXS
|
|
|
|
};
|
2024-09-03 17:21:46 +02:00
|
|
|
|
2024-09-28 14:32:46 +02:00
|
|
|
static const ggml_type other_types[] = {
|
|
|
|
GGML_TYPE_Q4_1,
|
|
|
|
GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
|
|
|
|
GGML_TYPE_Q8_0,
|
|
|
|
GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
|
|
|
|
GGML_TYPE_Q5_K,
|
|
|
|
GGML_TYPE_Q6_K,
|
|
|
|
// GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
|
|
|
|
GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
|
|
|
|
GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
|
|
|
|
GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
|
|
|
|
GGML_TYPE_BF16,
|
|
|
|
};
|
2024-09-03 17:21:46 +02:00
|
|
|
|
2024-09-28 14:32:46 +02:00
|
|
|
// Test cases for evaluation: should try to cover edge cases while using small input sizes to keep the runtime low
|
|
|
|
static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
|
2023-12-07 21:26:54 +01:00
|
|
|
std::vector<std::unique_ptr<test_case>> test_cases;
|
2024-01-09 08:58:55 +01:00
|
|
|
std::default_random_engine rng(0);
|
2023-12-07 21:26:54 +01:00
|
|
|
|
|
|
|
// unary ops
|
2024-06-12 15:00:22 +02:00
|
|
|
for (int v : {0, 1}) {
|
|
|
|
for (int op = 0; op < GGML_UNARY_OP_COUNT; op++) {
|
2024-09-03 17:21:46 +02:00
|
|
|
test_cases.emplace_back(new test_unary((ggml_unary_op) op, GGML_TYPE_F32, { 128, 2, 2, 2 }, v));
|
|
|
|
test_cases.emplace_back(new test_unary((ggml_unary_op) op, GGML_TYPE_F32, { 5, 7, 11, 13 }, v));
|
2024-06-12 15:00:22 +02:00
|
|
|
}
|
2023-12-07 21:26:54 +01:00
|
|
|
}
|
|
|
|
|
2023-12-13 13:04:25 +01:00
|
|
|
test_cases.emplace_back(new test_get_rows(GGML_TYPE_F32, 1, 8, 2, 1, false));
|
|
|
|
for (ggml_type type : all_types) {
|
|
|
|
for (int b : {1, 7}) {
|
|
|
|
for (bool v : {false, true}) {
|
|
|
|
test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, b, v));
|
|
|
|
}
|
|
|
|
}
|
2023-12-07 21:26:54 +01:00
|
|
|
}
|
2023-12-29 18:07:03 +01:00
|
|
|
for (int b : {1, 7}) {
|
|
|
|
for (bool v : {false, true}) {
|
|
|
|
test_cases.emplace_back(new test_get_rows(GGML_TYPE_I32, 256, 5, 4, b, v));
|
|
|
|
}
|
|
|
|
}
|
2023-12-07 21:26:54 +01:00
|
|
|
|
2024-01-31 14:10:15 +01:00
|
|
|
for (ggml_type type_input : {GGML_TYPE_F32}) {
|
|
|
|
for (ggml_op_pool pool_type : {GGML_OP_POOL_AVG, GGML_OP_POOL_MAX}) {
|
|
|
|
for (int k0 : {1, 3}) {
|
|
|
|
for (int k1 : {1, 3}) {
|
|
|
|
for (int s0 : {1, 2}) {
|
|
|
|
for (int s1 : {1, 2}) {
|
|
|
|
for (int p0 : {0, 1}) {
|
|
|
|
for (int p1 : {0, 1}) {
|
|
|
|
test_cases.emplace_back(new test_pool2d(pool_type, type_input, {10, 10, 3, 1}, k0, k1, s0, s1, p0, p1));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2024-10-18 09:24:44 +02:00
|
|
|
// im2col 1D
|
2024-09-03 17:21:46 +02:00
|
|
|
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
|
2024-08-02 10:50:53 +02:00
|
|
|
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
|
2024-09-03 17:21:46 +02:00
|
|
|
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
|
2024-10-18 09:24:44 +02:00
|
|
|
for (int s0 : {1, 3}) {
|
|
|
|
for (int p0 : {0, 3}) {
|
|
|
|
for (int d0 : {1, 3}) {
|
|
|
|
test_cases.emplace_back(new test_im2col(
|
|
|
|
GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 2, 2, 1}, {3, 2, 2, 1},
|
|
|
|
s0, 0, p0, 0, d0, 0, false));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// im2col 2D
|
|
|
|
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32));
|
|
|
|
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
|
|
|
|
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
|
|
|
|
for (int s0 : {1, 3}) {
|
|
|
|
for (int s1 : {1, 3}) {
|
|
|
|
for (int p0 : {0, 3}) {
|
|
|
|
for (int p1 : {0, 3}) {
|
|
|
|
for (int d0 : {1, 3}) {
|
|
|
|
for (int d1 : {1, 3}) {
|
|
|
|
test_cases.emplace_back(new test_im2col(
|
|
|
|
GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 20, 2, 2}, {3, 3, 2, 2},
|
|
|
|
s0, s1, p0, p1, d0, d1, true));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2024-01-31 14:10:15 +01:00
|
|
|
|
2024-10-18 09:24:44 +02:00
|
|
|
// extra tests for im2col 2D
|
2024-10-23 12:33:45 +02:00
|
|
|
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 32}, {3, 3, 1, 32}, 1, 1, 1, 1, 1, 1, true));
|
|
|
|
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 32}, {3, 3, 2, 32}, 1, 1, 1, 1, 1, 1, true));
|
|
|
|
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 1024}, {3, 3, 1, 1024}, 1, 1, 1, 1, 1, 1, true));
|
|
|
|
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 1024}, {3, 3, 2, 1024}, 1, 1, 1, 1, 1, 1, true));
|
|
|
|
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2048}, {3, 3, 1, 2048}, 1, 1, 1, 1, 1, 1, true));
|
|
|
|
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2048}, {3, 3, 2, 2048}, 1, 1, 1, 1, 1, 1, true));
|
|
|
|
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2560}, {3, 3, 1, 2560}, 1, 1, 1, 1, 1, 1, true));
|
|
|
|
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2560}, {3, 3, 2, 2560}, 1, 1, 1, 1, 1, 1, true));
|
|
|
|
|
2024-08-20 17:06:51 +02:00
|
|
|
// sycl backend will limit task global_range < MAX_INT
|
|
|
|
// test cases for 2D im2col with large input W and H (occurs in stable-diffusion)
|
|
|
|
// however these cases need to alloc more memory which may fail in some devices (Intel Arc770, etc.)
|
|
|
|
// these cases are verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
|
|
|
|
// test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
|
|
|
|
// test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
|
|
|
|
|
2024-07-02 18:09:52 +02:00
|
|
|
test_cases.emplace_back(new test_conv_transpose_1d());
|
|
|
|
test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 3, 0, 1));
|
|
|
|
test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 2, 0, 1));
|
|
|
|
test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 1, 0, 1));
|
|
|
|
test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 2, 0, 1));
|
|
|
|
test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 1, 0, 1));
|
|
|
|
test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,1,2,1}, 1, 0, 1));
|
|
|
|
test_cases.emplace_back(new test_conv_transpose_1d({2,1,1,1}, {3,1,1,1}, 1, 0, 1));
|
|
|
|
|
2024-12-02 19:27:24 +01:00
|
|
|
test_cases.emplace_back(new test_count_equal());
|
|
|
|
|
|
|
|
test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 1, 1, 1}));
|
|
|
|
test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {100, 10, 1, 1}));
|
2024-11-21 18:18:50 +01:00
|
|
|
test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
|
2024-12-02 19:27:24 +01:00
|
|
|
test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 12, 1, 1}));
|
2024-11-21 18:18:50 +01:00
|
|
|
test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {2000, 10, 1, 1}));
|
2024-12-02 19:27:24 +01:00
|
|
|
test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {5438, 3, 1, 1}));
|
2024-10-03 17:29:59 +02:00
|
|
|
|
2024-09-29 23:18:02 +02:00
|
|
|
for (int ne3 : {1, 3}) { // CUDA backward pass only supports ne3 == 1
|
2024-09-20 18:04:44 +02:00
|
|
|
test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 1}));
|
|
|
|
test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
|
|
|
|
test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 2, 1, 1}));
|
|
|
|
test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 2, 1}));
|
|
|
|
test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 2}));
|
|
|
|
test_cases.emplace_back(new test_repeat(GGML_TYPE_I32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
|
|
|
|
test_cases.emplace_back(new test_repeat(GGML_TYPE_I16, {10, 5, 4, ne3}, {1, 1, 1, 2}));
|
|
|
|
}
|
2023-12-07 21:26:54 +01:00
|
|
|
|
2023-12-29 18:07:03 +01:00
|
|
|
test_cases.emplace_back(new test_dup(GGML_TYPE_F32));
|
|
|
|
test_cases.emplace_back(new test_dup(GGML_TYPE_F16));
|
|
|
|
test_cases.emplace_back(new test_dup(GGML_TYPE_I32));
|
|
|
|
test_cases.emplace_back(new test_dup(GGML_TYPE_I16));
|
2024-07-17 13:23:50 +02:00
|
|
|
test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {0, 2, 1, 3}));
|
|
|
|
test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {0, 2, 1, 3})); // dup by rows
|
|
|
|
test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {1, 0, 2, 3}));
|
|
|
|
test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {1, 0, 2, 3})); // dup dst not-contiguous
|
2024-10-03 17:29:59 +02:00
|
|
|
test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {0, 2, 1, 3}));
|
|
|
|
test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {1, 2, 0, 3}));
|
2023-12-13 13:04:25 +01:00
|
|
|
|
2024-09-03 17:21:46 +02:00
|
|
|
for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
|
|
|
|
test_cases.emplace_back(new test_set(GGML_TYPE_F32, GGML_TYPE_F32, {6, 5, 4, 3}, dim));
|
|
|
|
}
|
|
|
|
|
2024-12-04 09:19:30 +01:00
|
|
|
for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
|
|
|
|
test_cases.emplace_back(new test_set(GGML_TYPE_I32, GGML_TYPE_I32, {6, 5, 4, 3}, dim));
|
|
|
|
}
|
|
|
|
|
2024-01-29 13:37:33 +01:00
|
|
|
for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) {
|
|
|
|
for (ggml_type type_dst : all_types) {
|
2024-12-17 17:35:42 +01:00
|
|
|
test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
|
|
|
|
test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
|
2024-07-17 13:23:50 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) {
|
|
|
|
for (ggml_type type_dst : {GGML_TYPE_F16, GGML_TYPE_F32}) {
|
|
|
|
test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {1, 0, 2, 3})); // cpy not-contiguous
|
2024-01-29 13:37:33 +01:00
|
|
|
}
|
2023-12-13 13:04:25 +01:00
|
|
|
}
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
test_cases.emplace_back(new test_cont());
|
2024-08-28 10:23:02 +02:00
|
|
|
test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 1, 1 ,1}));
|
|
|
|
test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 1, 3 ,5}));
|
|
|
|
test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 3, 5 ,7}));
|
|
|
|
test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 1, 1 ,1}));
|
|
|
|
test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 1, 3 ,5}));
|
|
|
|
test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 3, 5 ,7}));
|
|
|
|
test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 1, 1 ,1}));
|
|
|
|
test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 1, 3 ,5}));
|
|
|
|
test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 3, 5 ,7}));
|
2023-12-07 21:26:54 +01:00
|
|
|
|
|
|
|
auto add_test_bin_bcast = [&](ggml_type type, std::array<int64_t, 4> ne, std::array<int, 4> nr) {
|
|
|
|
for (auto op : {ggml_add, ggml_mul, ggml_div}) {
|
|
|
|
test_cases.emplace_back(new test_bin_bcast(op, type, ne, nr));
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 8, 1}, {1, 1, 1, 1});
|
2023-12-13 13:04:25 +01:00
|
|
|
add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1, 1}, {32, 1, 1, 1});
|
2023-12-07 21:26:54 +01:00
|
|
|
add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 320, 320}, {1, 1, 1, 1});
|
2024-09-03 17:21:46 +02:00
|
|
|
add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 1, 1}, {1, 1, 1, 1});
|
|
|
|
add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 1}, {1, 1, 1, 1});
|
|
|
|
add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 1, 1});
|
|
|
|
add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 3}, {2, 1, 1, 1});
|
|
|
|
add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 3}, {1, 2, 1, 1});
|
|
|
|
add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 2, 1});
|
|
|
|
add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 1, 2});
|
|
|
|
add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 2, 2});
|
|
|
|
add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 3}, {1, 2, 2, 2});
|
|
|
|
add_test_bin_bcast(GGML_TYPE_F32, {10, 5, 4, 3}, {2, 2, 2, 2});
|
2023-12-07 21:26:54 +01:00
|
|
|
|
|
|
|
// stable diffusion
|
|
|
|
add_test_bin_bcast(GGML_TYPE_F32, {1280, 1, 1, 1}, {1, 1, 1, 1});
|
|
|
|
add_test_bin_bcast(GGML_TYPE_F32, {1280, 1, 1, 1}, {1, 16, 16, 1});
|
|
|
|
add_test_bin_bcast(GGML_TYPE_F32, {1280, 16, 16, 1}, {1, 1, 1, 1});
|
|
|
|
add_test_bin_bcast(GGML_TYPE_F32, {1280, 1, 1, 1}, {1, 256, 1, 1});
|
|
|
|
add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1280, 1}, {16, 16, 1, 1});
|
|
|
|
add_test_bin_bcast(GGML_TYPE_F32, {16, 16, 1280, 1}, {1, 1, 1, 1});
|
|
|
|
add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1920, 1}, {16, 16, 1, 1});
|
|
|
|
add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 2560, 1}, {16, 16, 1, 1});
|
|
|
|
add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1280, 1}, {32, 32, 1, 1});
|
|
|
|
add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1920, 1}, {32, 32, 1, 1});
|
|
|
|
add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 640, 1}, {32, 32, 1, 1});
|
|
|
|
add_test_bin_bcast(GGML_TYPE_F32, {5120, 1, 1, 1}, {1, 256, 1, 1});
|
|
|
|
add_test_bin_bcast(GGML_TYPE_F32, {640, 1, 1, 1}, {1, 1, 1, 1});
|
2023-12-13 13:04:25 +01:00
|
|
|
//add_test_bin_bcast(GGML_TYPE_F32, {3, 3, 2560, 1280}, {1, 1, 1, 1});
|
|
|
|
//add_test_bin_bcast(GGML_TYPE_F32, {3, 3, 2560, 1280}, {2, 1, 1, 1});
|
2023-12-07 21:26:54 +01:00
|
|
|
|
2024-09-03 17:21:46 +02:00
|
|
|
test_cases.emplace_back(new test_add1());
|
2023-12-07 21:26:54 +01:00
|
|
|
test_cases.emplace_back(new test_scale());
|
|
|
|
|
|
|
|
for (float eps : {1e-6f, 1e-5f, 1e-3f, 1e-1f}) {
|
2024-09-03 17:21:46 +02:00
|
|
|
test_cases.emplace_back(new test_norm(GGML_TYPE_F32, {64, 5, 4, 3}, eps));
|
|
|
|
test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 5, 4, 3}, eps));
|
2023-12-07 21:26:54 +01:00
|
|
|
}
|
|
|
|
|
2024-08-26 16:55:36 +02:00
|
|
|
test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, 1536, 1, 1}, {4, 1536, 1, 1}));
|
|
|
|
test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {8, 1536, 1, 1}, {4, 1536, 1, 1}));
|
|
|
|
test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, 1536, 4, 1}, {4, 1536, 1, 1}));
|
|
|
|
|
|
|
|
test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 16, 1024, 32, 4));
|
|
|
|
|
2024-11-07 08:19:10 +01:00
|
|
|
test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 1, 1));
|
|
|
|
test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 1));
|
|
|
|
test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 4));
|
|
|
|
test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 128, 4));
|
2024-09-22 04:29:12 +02:00
|
|
|
|
2025-01-10 02:58:08 +01:00
|
|
|
test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 1, 1));
|
|
|
|
test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 1));
|
|
|
|
test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 4));
|
|
|
|
test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 128, 4));
|
|
|
|
|
2024-12-03 10:52:33 +01:00
|
|
|
for (int i = 1; i < 9; ++i) {
|
|
|
|
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1}));
|
|
|
|
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q4_0, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1}));
|
|
|
|
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q4_1, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1}));
|
|
|
|
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q5_0, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1}));
|
|
|
|
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q5_1, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1}));
|
|
|
|
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q8_0, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1}));
|
|
|
|
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q4_K, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1}));
|
|
|
|
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q5_K, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1}));
|
|
|
|
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q6_K, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1}));
|
|
|
|
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_IQ4_NL, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1}));
|
|
|
|
}
|
|
|
|
|
2024-07-19 17:17:27 +02:00
|
|
|
#if 1
|
2024-04-18 15:18:48 +02:00
|
|
|
for (ggml_type type_a : base_types) {
|
2023-12-29 09:32:31 +01:00
|
|
|
for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
|
2024-10-24 11:09:36 +02:00
|
|
|
// test cases without permutation
|
|
|
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, { 1, 1}, {1, 1}));
|
|
|
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 1}, {1, 1}));
|
|
|
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 1}, {2, 1}));
|
|
|
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {1, 1}));
|
|
|
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {2, 1}));
|
|
|
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {1, 2}));
|
|
|
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {2, 2}));
|
2023-12-07 21:26:54 +01:00
|
|
|
|
|
|
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, { 1, 1}, {1, 1}));
|
|
|
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 1}, {1, 1}));
|
|
|
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 1}, {2, 1}));
|
|
|
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {1, 1}));
|
|
|
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {2, 1}));
|
|
|
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {1, 2}));
|
|
|
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {2, 2}));
|
2024-10-24 11:09:36 +02:00
|
|
|
|
|
|
|
// test cases with permutation
|
|
|
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {2, 3}, {1, 1}, {0, 2, 1, 3}));
|
|
|
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {2, 3}, {1, 1}, {0, 1, 3, 2}));
|
|
|
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {2, 3}, {1, 1}, {0, 3, 2, 1}));
|
|
|
|
|
|
|
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 256, {2, 3}, {1, 1}, {0, 2, 1, 3}));
|
|
|
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 256, {2, 3}, {1, 1}, {0, 1, 3, 2}));
|
|
|
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 256, {2, 3}, {1, 1}, {0, 3, 2, 1}));
|
|
|
|
|
|
|
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {2, 3}, {1, 1}, {0, 2, 1, 3}));
|
|
|
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {2, 3}, {1, 1}, {0, 1, 3, 2}));
|
|
|
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {2, 3}, {1, 1}, {0, 3, 2, 1}));
|
2023-12-07 21:26:54 +01:00
|
|
|
}
|
|
|
|
}
|
2024-09-28 14:32:46 +02:00
|
|
|
for (ggml_type type_a : other_types) {
|
|
|
|
for (ggml_type type_b : {GGML_TYPE_F32}) {
|
|
|
|
if (ggml_blck_size(type_a) != 256) {
|
|
|
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, ggml_blck_size(type_a), {1, 1}, {1, 1}));
|
|
|
|
}
|
|
|
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 1}));
|
|
|
|
}
|
|
|
|
}
|
2024-07-19 17:17:27 +02:00
|
|
|
#else
|
|
|
|
// m = a rows
|
|
|
|
// n = b rows
|
|
|
|
// k = cols
|
|
|
|
std::uniform_int_distribution<> dist_m(1, 128);
|
|
|
|
std::uniform_int_distribution<> dist_n(16, 128);
|
|
|
|
std::uniform_int_distribution<> dist_k(1, 16);
|
|
|
|
for (int i = 0; i < 1000; i++) {
|
|
|
|
for (ggml_type type_a : all_types) {
|
|
|
|
for (ggml_type type_b : {GGML_TYPE_F32}) {
|
|
|
|
int m = dist_m(rng);
|
|
|
|
int n = dist_n(rng);
|
|
|
|
int k = dist_k(rng) * ggml_blck_size(type_a);
|
|
|
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, m, n, k, { 1, 1}, {1, 1}));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
2023-12-07 21:26:54 +01:00
|
|
|
|
2024-03-22 08:36:03 +01:00
|
|
|
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 128, { 8, 1}, {1, 1}));
|
|
|
|
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 128, { 8, 1}, {4, 1}));
|
|
|
|
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 64, { 8, 1}, {4, 1}));
|
|
|
|
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 64, { 8, 1}, {4, 1}));
|
|
|
|
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 45, 128, { 8, 1}, {4, 1}));
|
|
|
|
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 45, 64, { 8, 1}, {4, 1}));
|
|
|
|
|
2024-08-20 17:06:51 +02:00
|
|
|
// sycl backend will limit task global_range < MAX_INT
|
|
|
|
// test case for f16-type-convert-to-fp32 kernel with large k under fp32 compute dtype (occurs in stable-diffusion)
|
|
|
|
// however this case needs to alloc more memory which may fail in some devices (Intel Arc770, etc.)
|
|
|
|
// this case is verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
|
|
|
|
// test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 512, 262144, 9216, {1, 1}, {1, 1}));
|
|
|
|
|
2024-04-18 15:18:48 +02:00
|
|
|
for (ggml_type type_a : base_types) {
|
2023-12-07 21:26:54 +01:00
|
|
|
for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
|
2024-04-18 15:18:48 +02:00
|
|
|
for (int n_mats : {4, 8}) {
|
|
|
|
for (int n_used : {1, 2, 4}) {
|
|
|
|
for (bool b : {false, true}) {
|
|
|
|
for (int n : {1, 32}) {
|
|
|
|
int m = 512;
|
|
|
|
int k = 256;
|
|
|
|
test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for (ggml_type type_a : other_types) {
|
|
|
|
for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
|
|
|
|
for (int n_mats : {4}) {
|
|
|
|
for (int n_used : {2}) {
|
|
|
|
for (bool b : {false}) {
|
2024-11-06 18:53:51 +01:00
|
|
|
for (int n : {1, 32}) {
|
2024-04-18 15:18:48 +02:00
|
|
|
int m = 512;
|
|
|
|
int k = 256;
|
|
|
|
test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
|
|
|
|
}
|
2023-12-13 13:04:25 +01:00
|
|
|
}
|
2023-12-07 21:26:54 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2024-09-20 18:04:44 +02:00
|
|
|
for (ggml_type type_a : base_types) {
|
|
|
|
for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
|
|
|
|
test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 1, 16, { 1, 1}));
|
|
|
|
test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 1, 16, {10, 1}));
|
|
|
|
test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 1, 16, {10, 1}));
|
|
|
|
test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 1, 16, {10, 10}));
|
|
|
|
test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 1, 16, {10, 10}));
|
|
|
|
test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 1, 16, {10, 10}));
|
|
|
|
test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 1, 16, {10, 10}));
|
|
|
|
|
|
|
|
test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 16, 16, { 1, 1}));
|
|
|
|
test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 16, 16, { 1, 1}, true));
|
|
|
|
test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 16, 16, {10, 1}));
|
|
|
|
test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 16, 16, {10, 1}));
|
|
|
|
test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 16, 16, {10, 10}));
|
|
|
|
test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 16, 16, {10, 10}));
|
|
|
|
test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 16, 16, {10, 10}));
|
|
|
|
test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, 16, 16, {10, 10}));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-12-07 21:26:54 +01:00
|
|
|
test_cases.emplace_back(new test_sqr());
|
2024-06-17 00:23:04 +02:00
|
|
|
test_cases.emplace_back(new test_sqrt());
|
2024-09-03 17:21:46 +02:00
|
|
|
test_cases.emplace_back(new test_log());
|
2024-08-27 21:01:45 +02:00
|
|
|
test_cases.emplace_back(new test_sin());
|
|
|
|
test_cases.emplace_back(new test_cos());
|
2023-12-07 21:26:54 +01:00
|
|
|
test_cases.emplace_back(new test_clamp());
|
|
|
|
|
2024-09-03 17:21:46 +02:00
|
|
|
test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 1, 1}, 5));
|
|
|
|
test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 1}, 5));
|
|
|
|
test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 2}, 5));
|
2023-12-07 21:26:54 +01:00
|
|
|
|
2024-02-17 22:04:16 +01:00
|
|
|
#if 0
|
2024-01-09 08:58:55 +01:00
|
|
|
std::uniform_int_distribution<> dist_ne1(1, 50);
|
|
|
|
int exponent = 1;
|
|
|
|
while (exponent < (1 << 17)) {
|
|
|
|
std::uniform_int_distribution<> dist_ne0(exponent, 2*exponent);
|
|
|
|
|
|
|
|
for (int n = 0; n < 10; ++n) {
|
|
|
|
int64_t ne0 = dist_ne0(rng);
|
|
|
|
int64_t ne1 = dist_ne1(rng);
|
2024-07-17 13:23:50 +02:00
|
|
|
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, GGML_TYPE_F32, {ne0, ne1, 1, 1}, n/2 == 0, 0.1f, ne0 < 1000 ? 4.0f : 0.0f));
|
2024-01-09 08:58:55 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
exponent <<= 1;
|
|
|
|
}
|
2024-02-17 22:04:16 +01:00
|
|
|
#endif
|
|
|
|
for (bool mask : {false, true}) {
|
|
|
|
for (float max_bias : {0.0f, 8.0f}) {
|
2024-05-11 09:32:41 +02:00
|
|
|
if (!mask && max_bias > 0.0f) continue;
|
2024-02-17 22:04:16 +01:00
|
|
|
for (float scale : {1.0f, 0.1f}) {
|
|
|
|
for (int64_t ne0 : {16, 1024}) {
|
|
|
|
for (int64_t ne1 : {16, 1024}) {
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, scale, max_bias));
|
2024-02-17 22:04:16 +01:00
|
|
|
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, scale, max_bias));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2024-07-17 13:23:50 +02:00
|
|
|
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, 0.1f, 0.0f));
|
2024-02-17 22:04:16 +01:00
|
|
|
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, false, 0.1f, 0.0f));
|
|
|
|
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, 0.1f, 0.0f));
|
|
|
|
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, 0.1f, 8.0f));
|
2024-01-29 21:50:50 +01:00
|
|
|
|
2024-05-29 19:17:31 +02:00
|
|
|
{
|
|
|
|
bool all = true;
|
|
|
|
|
|
|
|
for (float v : { 0, 1 }) {
|
|
|
|
for (float fs : { 1.0f, 1.4245f }) {
|
|
|
|
for (float ef : { 0.0f, 0.7465f }) {
|
|
|
|
for (float af : { 1.0f, 1.4245f }) {
|
|
|
|
for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
|
|
|
|
for (bool ff : {false, true}) { // freq_factors
|
2024-09-03 17:21:46 +02:00
|
|
|
test_cases.emplace_back(new test_rope(type, {128, 32, 2, 1}, 128, 0, 512, fs, ef, af, ff, v)); // llama 7B
|
2024-06-05 10:29:20 +02:00
|
|
|
|
|
|
|
if (all) {
|
2024-09-03 17:21:46 +02:00
|
|
|
test_cases.emplace_back(new test_rope(type, {128, 40, 2, 1}, 128, 0, 512, fs, ef, af, ff, v)); // llama 13B
|
|
|
|
test_cases.emplace_back(new test_rope(type, {128, 52, 2, 1}, 128, 0, 512, fs, ef, af, ff, v)); // llama 30B
|
|
|
|
test_cases.emplace_back(new test_rope(type, {128, 64, 2, 1}, 128, 0, 512, fs, ef, af, ff, v)); // llama 65B
|
2024-06-05 10:29:20 +02:00
|
|
|
}
|
|
|
|
|
2024-05-29 19:17:31 +02:00
|
|
|
if (all) {
|
2024-09-03 17:21:46 +02:00
|
|
|
test_cases.emplace_back(new test_rope(type, { 64, 1, 2, 1}, 64, 2, 512, fs, ef, af, ff, v)); // neox (falcon 7B)
|
|
|
|
test_cases.emplace_back(new test_rope(type, { 64, 71, 2, 1}, 64, 2, 512, fs, ef, af, ff, v)); // neox (falcon 7B)
|
|
|
|
test_cases.emplace_back(new test_rope(type, { 64, 8, 2, 1}, 64, 2, 512, fs, ef, af, ff, v)); // neox (falcon 40B)
|
|
|
|
test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 20, 2, 512, fs, ef, af, ff, v)); // neox (stablelm)
|
|
|
|
test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 32, 2, 512, fs, ef, af, ff, v)); // neox (phi-2)
|
2024-05-29 19:17:31 +02:00
|
|
|
}
|
|
|
|
|
llama : add Qwen2VL support + multimodal RoPE (#10361)
* Barebone Qwen2VL LLM convertor
* Add Qwen2VL cli entrypoint
* [WIP] add qwen2vl arch
* Verify m-rope output
* Add vl-rope/2d-rope support for qwen2vl ViT
* update qwen2vl cli tool
* update 5D tensor op workaround
* [WIP] qwen2vl vision model
* make batch and clip utils compatible with qwen2vl
* [WIP] create inference workflow, gguf convert script but fix
* correcting vision-rope behavior, add the missing last layer back to ViT
* add arg parser to qwen2vl_surgery
* replace variable size array with vector
* cuda-gdb cmake preset
* add fp32 mrope, vision rope kernel
* add fp16 support for qwen2vl and m-rope
* add `GGML_ROPE_TYPE_MROPE`, `GGML_ROPE_TYPE_VISION`
* fix rope op mode switching, out dated func args
* update `llama_hparams`
* update to keep up stream changes
* resolve linter, test errors
* add makefile entry, update speical image padding token
* add mrope unit test, fix few compiler warnings
* rename `mrope` related function, params
* minor updates on debug util, bug fixs
* add `m-rope` testcase to `test-backend-ops`
* Apply suggestions from code review
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* fix traililng whitespce
* store `llama_hparams.rope_sections` with fixed size array
* update position id tensor size check in GGML_OP_ROPE
* minor updates
* update `ggml_backend_*_supports_op` of unsupported backends
* remote old `rope_section` compare operator
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-12-14 13:43:46 +01:00
|
|
|
if (all) {
|
|
|
|
test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v)); // rope_multi,m-rope (qwen2vl 2B)
|
|
|
|
test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v)); // rope_multi,m-rope (qwen2vl 7B)
|
|
|
|
test_cases.emplace_back(new test_rope(type, { 80, 16, 2, 1}, 80, GGML_ROPE_TYPE_VISION, 512, fs, ef, af, ff, v)); // rope_multi,m-rope (qwen2vl ViT)
|
|
|
|
}
|
|
|
|
|
2024-09-03 17:21:46 +02:00
|
|
|
test_cases.emplace_back(new test_rope(type, { 64, 128, 2, 1}, 64, 2, 512, fs, ef, af, ff, v)); // neox (falcon 40B)
|
2024-05-29 19:17:31 +02:00
|
|
|
}
|
|
|
|
}
|
2024-06-05 10:29:20 +02:00
|
|
|
|
2024-05-29 19:17:31 +02:00
|
|
|
all = false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2024-05-22 10:01:35 +02:00
|
|
|
}
|
2023-12-07 21:26:54 +01:00
|
|
|
}
|
|
|
|
|
2024-05-29 14:38:26 +02:00
|
|
|
for (int v : { 0, 1, 2, 3 }) {
|
|
|
|
for (int dim : { 0, 1, 2, 3, }) {
|
|
|
|
test_cases.emplace_back(new test_concat(GGML_TYPE_F32, {11, 12, 13, 14}, 7, dim, v));
|
|
|
|
test_cases.emplace_back(new test_concat(GGML_TYPE_I32, {11, 12, 13, 14}, 7, dim, v));
|
|
|
|
}
|
2024-05-28 10:04:19 +02:00
|
|
|
}
|
2023-12-07 21:26:54 +01:00
|
|
|
|
2024-02-25 11:09:09 +01:00
|
|
|
for (ggml_sort_order order : {GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC}) {
|
2023-12-13 13:04:25 +01:00
|
|
|
test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {8, 1, 1, 1}, order));
|
2023-12-07 21:26:54 +01:00
|
|
|
test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order));
|
2024-04-03 15:07:05 +02:00
|
|
|
test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {60, 10, 10, 10}, order)); // qwen
|
2023-12-07 21:26:54 +01:00
|
|
|
}
|
|
|
|
|
2024-09-03 17:21:46 +02:00
|
|
|
test_cases.emplace_back(new test_sum());
|
2023-12-13 20:54:54 +01:00
|
|
|
test_cases.emplace_back(new test_sum_rows());
|
2024-11-16 21:17:59 +01:00
|
|
|
test_cases.emplace_back(new test_mean());
|
2023-12-13 20:54:54 +01:00
|
|
|
test_cases.emplace_back(new test_upscale());
|
2024-05-15 10:52:33 +02:00
|
|
|
test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, { 512, 512, 3, 1 }, 2, true));
|
|
|
|
test_cases.emplace_back(new test_upscale_ext());
|
2024-11-26 16:45:05 +01:00
|
|
|
test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {64, 64, 320, 1}));
|
|
|
|
test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {9, 9, 1280, 1}));
|
2023-12-13 20:54:54 +01:00
|
|
|
test_cases.emplace_back(new test_acc());
|
|
|
|
test_cases.emplace_back(new test_pad());
|
2024-12-03 20:20:04 +01:00
|
|
|
test_cases.emplace_back(new test_pad_reflect_1d());
|
2024-03-03 13:23:52 +01:00
|
|
|
test_cases.emplace_back(new test_arange());
|
|
|
|
test_cases.emplace_back(new test_timestep_embedding());
|
2023-12-13 20:54:54 +01:00
|
|
|
test_cases.emplace_back(new test_leaky_relu());
|
2023-12-13 13:04:25 +01:00
|
|
|
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
for (int hs : { 64, 80, 128, 256, }) {
|
2024-05-14 18:09:30 +02:00
|
|
|
for (bool mask : { true, false } ) {
|
|
|
|
for (float max_bias : { 0.0f, 8.0f }) {
|
|
|
|
if (!mask && max_bias > 0.0f) continue;
|
2024-08-24 21:34:59 +02:00
|
|
|
for (float logit_softcap : {0.0f, 10.0f}) {
|
|
|
|
if (hs != 128 && logit_softcap != 0.0f) continue;
|
|
|
|
for (int nh : { 32, }) {
|
|
|
|
for (int kv : { 512, 1024, }) {
|
2024-09-22 09:34:52 +02:00
|
|
|
for (int nb : { 1, 3, 32, 35, }) {
|
2024-11-08 12:47:22 +01:00
|
|
|
for (ggml_type type_KV : {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0}) {
|
2024-08-24 21:34:59 +02:00
|
|
|
test_cases.emplace_back(new test_flash_attn_ext(hs, nh, kv, nb, mask, max_bias, logit_softcap, type_KV));
|
|
|
|
}
|
2024-06-01 08:44:14 +02:00
|
|
|
}
|
2024-05-14 18:09:30 +02:00
|
|
|
}
|
2024-05-11 09:32:41 +02:00
|
|
|
}
|
ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API
* ggml : fix GQA support in ggml_flash_attn_ext
* ggml : online attention (CPU)
* metal : initial implementation
* metal : f16 precision
* metal : reduce branches
* metal : specialize for head size
* wip : 8 rows per simd group
* wip : 4 rows per simd group
* wip : template for rows per warp
* metal : parallelize across KV size
* metal : parallel reduce across heads
* metal : efficient flash_attn_f16 implementation
* metal : avoid redundant loads of the attention
* metal : scale and mask in matrix form
* metal : fix comment
* llama : avoid ggml_cast, use F32 query
* metal : add parallel reduce version (disabled)
* metal : move output into local memory + optimize
- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments
* metal : add tests, fix scaling, support C > 32
* metal : improve precision
* ggml : fix f16 mad
* metal : minor
* metal : support Q > 8
* tests : add ATTN tests
* metal : disable buffer allocation logs
* tests : more
* metal : faster inner loop for C == 32
* metal : fix array initialization
* tests : ifdef
* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext
* ggml : fix ggml_soft_max mask requirement
* cuda : fix soft_max to use correct mask size
* cuda : add flash_attn kernel (wip)
* metal : optimize softmax for C > 32
* metal : optimize softmax
* tests : minor fix
* cuda : avoid zeroing fragments
* tests : update dims
* cuda : fix __hisinf() result check
* cuda : avoid warp_reduce for smax
* cuda : use int instead of int64_t
Noticeably improves performance (thanks to Johannes)
* cuda : make loops use the same loop values
Thanks Johannes again for the tip
* cuda : unroll some of the loops
* cuda : avoid __hisinf branches
* cuda : use half2 in softmax
* cuda : switch to 1 warp for bs > 16
* cuda : speed-up reduce part of the kernel
* cuda : unroll Q*K^T loop
* cuda : fix -INF block check
* cuda : simplify softmax
* cuda : fix matrix names
* cuda : minor
* llama : adapt to F16 KQ_pos
* llama : adapt new models to F16 KQ_mask
* ggml : fix F16 store (ARM NEON)
* llama : fix type of KQ_mask and KQ_pos
* ggml : fix CPU soft_max
* tests : add hs=256
* cuda : fix build
* metal : improve perf via smaller int registers
* cuda : adapt soft_max to F16 mask and pos
* CUDA: faster FlashAttention, kernel for bs == 1
* 16 cols for Phi-2
* no vec for hs, no hs==256 ncols==32 for Volta
* adjust kernel selection logic
* 4 warps, 256 stride for all D
* no ncols == 64
* Multiple parallel blocks for batch size 1
* fix compile warnings
* fix excessive KQ_b loads
* fix cmake build
* fix KV cache padding, NaN from INFINITY (#6438)
* llama : flash_attn cparam + fix defrag
* server: support flash_attn param
* server: bench: enable flash_attn param
* CUDA: refactor host code, dyn. par. blocks
* fix flash_attn_vec_f16 race condition
* flush softmax exp below threshold to 0
* store temp KQ in registers
* Calculate KQ as FP32 if KQV has GGML_PREC_F32
* Add __hgt2_mask implementation for CUDA 11
* fix KQ FP32 precision fpr parallel_blocks > 1
* llama-bench : add -fa,--flash-attn arg
* metal : add BS=1 kernel for flash attention (#6508)
* metal : add BS=1 kernel for flash attention (wip)
* metal : support more than 1 warps
* metal : opts
* metal : opt
* metal : switch to parallel reduce
* metal : reduce registers
* metal : simplify
* metal : initial FA vec kernel
* metal : use F32 attention accumulators
* batched-bench : add fattn arg
* llama : simplify llama_build_kv_store
ggml-ci
* llama : adapt build_olmo to changes
* ggml : fix arm fp16 store on windows
* metal : clean-up
* metal : clean-up kernel code
* metal : minor
* tests : remove benchmarks
ggml-ci
* ggml : fix avx512 const correctness
ggml-ci
* ggml : fix soft_max with bias on CPU
ggml-ci
* common : print --flash-attn in help
* ggml : fix num dimensions in ggml_flash_attn_ext
* llama : force disable flash attention for incompatible models
* ggml : ggml_soft_max support F16/F32 mask/pos
ggml-ci
* cuda : uint -> uint32_t
* cuda : "constexpr dim3" -> "const dim3"
ggml-ci
* cuda : try to fix __hgt2_mask
ggml-ci
* ggml : add TODO's for F16/F32 mask/pos support in other backends
* llama : replace bool need_kq_pos with use_alibi
* llama : prep ALiBi support for BERT models
ggml-ci
* llama : fix n_batch requirements
ggml-ci
* cont
* server : add help for --flash-attn arg
* llama : disable FA for AMD
* tests : remove TMP_ATTN_BENCH
ggml-ci
* llama : support save/load state with FA enabled
ggml-ci
* ci : add CUDA save-load-state tests
ggml-ci
* llama : llama_kv_cache_clear zeroes data + fix save-load seq
ggml-ci
* llama : fix copy-paste errors, add TODO
* llama : disallow incompatible states
* llama : update llama_state_get_size after v_trans field
* metal : remove tmp log
* llama : add static reminder for llama_state_get_size
* metal : fix max nsg
ggml-ci
* ci : fix arg order
ggml-ci
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 11:16:08 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2024-08-27 21:01:45 +02:00
|
|
|
test_cases.emplace_back(new test_cross_entropy_loss());
|
2024-11-16 21:17:59 +01:00
|
|
|
test_cases.emplace_back(new test_opt_step_adamw(GGML_TYPE_F32, {10, 5, 4, 3}));
|
2024-08-27 21:01:45 +02:00
|
|
|
|
2024-02-13 10:20:24 +01:00
|
|
|
// these tests are disabled to save execution time, but they can be handy for debugging
|
|
|
|
#if 0
|
2024-01-29 21:50:50 +01:00
|
|
|
test_cases.emplace_back(new test_llama(1));
|
|
|
|
test_cases.emplace_back(new test_llama(2));
|
|
|
|
test_cases.emplace_back(new test_falcon(1));
|
|
|
|
test_cases.emplace_back(new test_falcon(2));
|
|
|
|
#endif
|
|
|
|
|
2024-09-28 14:32:46 +02:00
|
|
|
return test_cases;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Test cases for performance evaluation: should be representative of real-world use cases
|
|
|
|
static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
|
|
|
|
std::vector<std::unique_ptr<test_case>> test_cases;
|
|
|
|
|
|
|
|
test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 1, 1, 1}));
|
|
|
|
test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 512, 1, 1}));
|
|
|
|
|
2024-11-13 07:58:57 +01:00
|
|
|
test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F16, {512, 3072, 1, 1}));
|
2024-12-04 08:28:59 +01:00
|
|
|
test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {8192, 512, 2, 1}, {0, 2, 1, 3}));
|
|
|
|
test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {3072, 512, 2, 1}, {0, 2, 1, 3}));
|
2024-11-13 07:58:57 +01:00
|
|
|
|
2024-11-19 08:25:17 +01:00
|
|
|
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {4096, 4096, 5, 1}, false, 1.0f, 0.0f));
|
|
|
|
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 4096, 5, 1}, false, 1.0f, 0.0f));
|
|
|
|
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {1024, 1024, 10, 1}, false, 1.0f, 0.0f));
|
|
|
|
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 1024, 10, 1}, false, 1.0f, 0.0f));
|
|
|
|
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {256, 256, 20, 1}, false, 1.0f, 0.0f));
|
|
|
|
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {64, 64, 20, 1}, false, 1.0f, 0.0f));
|
|
|
|
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 64, 20, 1}, false, 1.0f, 0.0f));
|
|
|
|
|
2024-11-21 18:18:50 +01:00
|
|
|
test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 10, 1, 1}));
|
|
|
|
test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
|
|
|
|
test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32000, 512, 1, 1}));
|
|
|
|
|
2024-12-30 18:27:11 +01:00
|
|
|
for (int bs : {1, 2, 3, 4, 5, 8, 512}) {
|
2024-09-28 14:32:46 +02:00
|
|
|
for (ggml_type type_a : all_types) {
|
|
|
|
for (ggml_type type_b : {GGML_TYPE_F32}) {
|
|
|
|
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 4096, bs, 14336, {1, 1}, {1, 1}));
|
2024-09-03 17:21:46 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2024-12-29 10:16:34 +01:00
|
|
|
for (int K : {3, 5}) {
|
|
|
|
for (int IC : {256, 2560}) {
|
|
|
|
for (int IW_IH : {32, 64, 256}) {
|
|
|
|
if (IC == 2560 && IW_IH == 256) {
|
|
|
|
// too big
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {IW_IH, IW_IH, IC, 1}, {K, K, IC, 1}, 1, 1, 1, 1, 1, 1, true));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2024-09-28 14:32:46 +02:00
|
|
|
return test_cases;
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_name) {
|
2023-12-07 21:26:54 +01:00
|
|
|
if (mode == MODE_TEST) {
|
2024-09-28 14:32:46 +02:00
|
|
|
auto test_cases = make_test_cases_eval();
|
2024-11-25 15:13:39 +01:00
|
|
|
ggml_backend_t backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, NULL);
|
|
|
|
if (backend_cpu == NULL) {
|
|
|
|
printf(" Failed to initialize CPU backend\n");
|
|
|
|
return false;
|
|
|
|
}
|
2023-12-07 21:26:54 +01:00
|
|
|
|
|
|
|
size_t n_ok = 0;
|
|
|
|
for (auto & test : test_cases) {
|
|
|
|
if (test->eval(backend, backend_cpu, op_name)) {
|
|
|
|
n_ok++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
printf(" %zu/%zu tests passed\n", n_ok, test_cases.size());
|
|
|
|
|
|
|
|
ggml_backend_free(backend_cpu);
|
|
|
|
|
|
|
|
return n_ok == test_cases.size();
|
2023-12-13 13:04:25 +01:00
|
|
|
}
|
|
|
|
|
2024-09-28 14:32:46 +02:00
|
|
|
if (mode == MODE_GRAD) {
|
|
|
|
auto test_cases = make_test_cases_eval();
|
|
|
|
size_t n_ok = 0;
|
|
|
|
for (auto & test : test_cases) {
|
|
|
|
if (test->eval_grad(backend, op_name)) {
|
|
|
|
n_ok++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
printf(" %zu/%zu tests passed\n", n_ok, test_cases.size());
|
|
|
|
|
|
|
|
return n_ok == test_cases.size();
|
|
|
|
}
|
|
|
|
|
2023-12-13 13:04:25 +01:00
|
|
|
if (mode == MODE_PERF) {
|
2024-09-28 14:32:46 +02:00
|
|
|
auto test_cases = make_test_cases_perf();
|
2023-12-07 21:26:54 +01:00
|
|
|
for (auto & test : test_cases) {
|
|
|
|
test->eval_perf(backend, op_name);
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
2023-12-13 13:04:25 +01:00
|
|
|
|
2024-07-27 04:41:55 +02:00
|
|
|
GGML_ABORT("fatal error");
|
2023-12-07 21:26:54 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
static void usage(char ** argv) {
|
|
|
|
printf("Usage: %s [mode] [-o op] [-b backend]\n", argv[0]);
|
2024-09-03 17:21:46 +02:00
|
|
|
printf(" valid modes:\n");
|
|
|
|
printf(" - test (default, compare with CPU backend for correctness)\n");
|
|
|
|
printf(" - grad (compare gradients from backpropagation with method of finite differences)\n");
|
2024-09-28 14:32:46 +02:00
|
|
|
printf(" - perf (performance evaluation)\n");
|
|
|
|
printf(" op names for -o are as given by ggml_op_desc() (e.g. ADD, MUL_MAT, etc)\n");
|
2023-12-07 21:26:54 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
int main(int argc, char ** argv) {
|
|
|
|
test_mode mode = MODE_TEST;
|
2024-03-13 14:58:30 +01:00
|
|
|
const char * op_name_filter = NULL;
|
|
|
|
const char * backend_filter = NULL;
|
2023-12-07 21:26:54 +01:00
|
|
|
|
|
|
|
for (int i = 1; i < argc; i++) {
|
|
|
|
if (strcmp(argv[i], "test") == 0) {
|
|
|
|
mode = MODE_TEST;
|
|
|
|
} else if (strcmp(argv[i], "perf") == 0) {
|
|
|
|
mode = MODE_PERF;
|
2024-09-03 17:21:46 +02:00
|
|
|
} else if (strcmp(argv[i], "grad") == 0) {
|
|
|
|
mode = MODE_GRAD;
|
2023-12-07 21:26:54 +01:00
|
|
|
} else if (strcmp(argv[i], "-o") == 0) {
|
|
|
|
if (i + 1 < argc) {
|
2024-03-13 14:58:30 +01:00
|
|
|
op_name_filter = argv[++i];
|
2023-12-07 21:26:54 +01:00
|
|
|
} else {
|
|
|
|
usage(argv);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
} else if (strcmp(argv[i], "-b") == 0) {
|
|
|
|
if (i + 1 < argc) {
|
2024-03-13 14:58:30 +01:00
|
|
|
backend_filter = argv[++i];
|
2023-12-07 21:26:54 +01:00
|
|
|
} else {
|
|
|
|
usage(argv);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
usage(argv);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2024-11-25 15:13:39 +01:00
|
|
|
// load and enumerate backends
|
|
|
|
ggml_backend_load_all();
|
|
|
|
|
2024-10-03 01:49:47 +02:00
|
|
|
printf("Testing %zu devices\n\n", ggml_backend_dev_count());
|
2023-12-07 21:26:54 +01:00
|
|
|
|
|
|
|
size_t n_ok = 0;
|
|
|
|
|
2024-10-03 01:49:47 +02:00
|
|
|
for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
|
|
|
|
ggml_backend_dev_t dev = ggml_backend_dev_get(i);
|
|
|
|
|
|
|
|
printf("Backend %zu/%zu: %s\n", i + 1, ggml_backend_dev_count(), ggml_backend_dev_name(dev));
|
2023-12-07 21:26:54 +01:00
|
|
|
|
2024-10-03 01:49:47 +02:00
|
|
|
if (backend_filter != NULL && strcmp(backend_filter, ggml_backend_dev_name(dev)) != 0) {
|
2023-12-07 21:26:54 +01:00
|
|
|
printf(" Skipping\n");
|
|
|
|
n_ok++;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
2024-11-25 15:13:39 +01:00
|
|
|
if (backend_filter == NULL && ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU && mode != MODE_GRAD) {
|
2024-03-13 14:58:30 +01:00
|
|
|
printf(" Skipping CPU backend\n");
|
|
|
|
n_ok++;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
2024-11-25 15:13:39 +01:00
|
|
|
ggml_backend_t backend = ggml_backend_dev_init(dev, NULL);
|
|
|
|
GGML_ASSERT(backend != NULL);
|
|
|
|
|
2024-10-07 21:55:08 +02:00
|
|
|
ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
|
|
|
|
auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
|
|
|
|
if (ggml_backend_set_n_threads_fn) {
|
2024-09-28 14:32:46 +02:00
|
|
|
// TODO: better value for n_threads
|
2024-10-07 21:55:08 +02:00
|
|
|
ggml_backend_set_n_threads_fn(backend, std::thread::hardware_concurrency());
|
2024-09-28 14:32:46 +02:00
|
|
|
}
|
|
|
|
|
2024-10-03 01:49:47 +02:00
|
|
|
printf(" Device description: %s\n", ggml_backend_dev_description(dev));
|
|
|
|
size_t free, total; // NOLINT
|
|
|
|
ggml_backend_dev_memory(dev, &free, &total);
|
|
|
|
printf(" Device memory: %zu MB (%zu MB free)\n", total / 1024 / 1024, free / 1024 / 1024);
|
|
|
|
printf("\n");
|
2023-12-07 21:26:54 +01:00
|
|
|
|
2024-03-13 14:58:30 +01:00
|
|
|
bool ok = test_backend(backend, mode, op_name_filter);
|
2023-12-07 21:26:54 +01:00
|
|
|
|
|
|
|
printf(" Backend %s: ", ggml_backend_name(backend));
|
|
|
|
if (ok) {
|
|
|
|
printf("\033[1;32mOK\033[0m\n");
|
|
|
|
n_ok++;
|
|
|
|
} else {
|
|
|
|
printf("\033[1;31mFAIL\033[0m\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
printf("\n");
|
|
|
|
|
|
|
|
ggml_backend_free(backend);
|
|
|
|
}
|
|
|
|
|
2024-11-16 21:17:59 +01:00
|
|
|
ggml_quantize_free();
|
|
|
|
|
2024-10-03 01:49:47 +02:00
|
|
|
printf("%zu/%zu backends passed\n", n_ok, ggml_backend_dev_count());
|
2023-12-13 13:04:25 +01:00
|
|
|
|
2024-10-03 01:49:47 +02:00
|
|
|
if (n_ok != ggml_backend_dev_count()) {
|
2023-12-07 21:26:54 +01:00
|
|
|
printf("\033[1;31mFAIL\033[0m\n");
|
|
|
|
return 1;
|
|
|
|
}
|
2023-12-13 13:04:25 +01:00
|
|
|
|
|
|
|
printf("\033[1;32mOK\033[0m\n");
|
|
|
|
return 0;
|
2023-12-07 21:26:54 +01:00
|
|
|
}
|